Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
When deploying machine learning models in the real world, we often face the challenge of “unlearning” specific data points or subsets a… (voir plus)fter training. Inspired by Domain-Adversarial Training of Neural Networks (DANN), we propose a novel algorithm,SURE, for targeted unlearning.SURE treats the process as a domain adaptation problem, where the “forget set” (data to be removed) and a validation set from the same distribution form two distinct domains. We train a domain classifier to discriminate between representations from the forget and validation sets.Using a gradient reversal strategy similar to DANN, we perform gradient updates to the representations to “fool” the domain classifier and thus obfuscate representations belonging to the forget set. Simultaneously, gradient descent is applied to the retain set (original training data minus the forget set) to preserve its classification performance. Unlike other unlearning approaches whose training objectives are built based on model outputs, SURE directly manipulates the representations.This is key to ensure robustness against a set of more powerful attacks than currently considered in the literature, that aim to detect which examples were unlearned through access to learned embeddings. Our thorough experiments reveal that SURE has a better unlearning quality to utility trade-off compared to other standard unlearning techniques for deep neural networks.
When deploying machine learning models in the real world, we often face the challenge of “unlearning” specific data points or subsets a… (voir plus)fter training. Inspired by Domain-Adversarial Training of Neural Networks (DANN), we propose a novel algorithm,SURE, for targeted unlearning.SURE treats the process as a domain adaptation problem, where the “forget set” (data to be removed) and a validation set from the same distribution form two distinct domains. We train a domain classifier to discriminate between representations from the forget and validation sets.Using a gradient reversal strategy similar to DANN, we perform gradient updates to the representations to “fool” the domain classifier and thus obfuscate representations belonging to the forget set. Simultaneously, gradient descent is applied to the retain set (original training data minus the forget set) to preserve its classification performance. Unlike other unlearning approaches whose training objectives are built based on model outputs, SURE directly manipulates the representations.This is key to ensure robustness against a set of more powerful attacks than currently considered in the literature, that aim to detect which examples were unlearned through access to learned embeddings. Our thorough experiments reveal that SURE has a better unlearning quality to utility trade-off compared to other standard unlearning techniques for deep neural networks.
Segmentation of enhancing tumours or lesions from MRI is important for detecting new disease activity in many clinical contexts. However, ac… (voir plus)curate segmentation requires the inclusion of medical images (e.g., T1 post-contrast MRI) acquired after injecting patients with a contrast agent (e.g., Gadolinium), a process no longer thought to be safe. Although a number of modality-agnostic segmentation networks have been developed over the past few years, they have been met with limited success in the context of enhancing pathology segmentation. In this work, we present HAD-Net, a novel offline adversarial knowledge distillation (KD) technique, whereby a pre-trained teacher segmentation network, with access to all MRI sequences, teaches a student network, via hierarchical adversarial training, to better overcome the large domain shift presented when crucial images are absent during inference. In particular, we apply HAD-Net to the challenging task of enhancing tumour segmentation when access to post-contrast imaging is not available. The proposed network is trained and tested on the BraTS 2019 brain tumour segmentation challenge dataset, where it achieves performance improvements in the ranges of 16% - 26% over (a) recent modality-agnostic segmentation methods (U-HeMIS, U-HVED), (b) KD-Net adapted to this problem, (c) the pre-trained student network and (d) a non-hierarchical version of the network (AD-Net), in terms of Dice scores for enhancing tumour (ET). The network also shows improvements in tumour core (TC) Dice scores. Finally, the network outperforms both the baseline student network and AD-Net in terms of uncertainty quantification for enhancing tumour segmentation based on the BraTS 2019 uncertainty challenge metrics. Our code is publicly available at: https://github.com/SaverioVad/HAD_Net
2021-08-25
Proceedings of the Fourth Conference on Medical Imaging with Deep Learning (publié)
Accurate detection and segmentation of new lesional activity in longitudinal Magnetic Resonance Images (MRIs) of patients with Multiple Scle… (voir plus)rosis (MS) is important for monitoring disease activity, as well as for assessing treatment effects. In this work, we present the first deep learning framework to automatically detect and segment new and enlarging (NE) T2w lesions from longitudinal brain MRIs acquired from relapsing-remitting MS (RRMS) patients. The proposed framework is an adapted 3D U-Net [1] which includes as inputs the reference multi-modal MRI and T2-weighted lesion maps, as well an attention mechanism based on the subtraction MRI (between the two timepoints) which serves to assist the network in learning to differentiate between real anatomical change and artifactual change, while constraining the search space for small lesions. Experiments on a large, proprietary, multi -center, multi-modal, clinical trial dataset consisting of 1677 multi-modal scans illustrate that network achieves high overall detection accuracy (detection AUC=.95), outperforming (1) a U-Net without an attention mechanism (de-tection AUC=.93), (2) a framework based on subtracting independent T2-weighted segmentations (detection AUC=.57), and (3) DeepMedic (detection AUC=.84) [2], particularly for small lesions. In addition, the method was able to accurately classify patients as active/inactive with (sensitivities of. 69 and specificities of. 97).
2020-04-03
2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI) (publié)