Portrait de Shuyuan Zhang n'est pas disponible

Shuyuan Zhang

Doctorat - McGill
Superviseur⋅e principal⋅e
Sujets de recherche
Apprentissage par renforcement

Publications

SCAR: Shapley Credit Assignment for More Efficient RLHF
Meng Cao
Xiaojun Chang
Revisiting Heterophily For Graph Neural Networks
Chenqing Hua
Qincheng Lu
Jiaqi Zhu
Mingde Zhao
Xiao-Wen Chang
Graph Neural Networks (GNNs) extend basic Neural Networks (NNs) by using graph structures based on the relational inductive bias (homophily … (voir plus)assumption). While GNNs have been commonly believed to outperform NNs in real-world tasks, recent work has identified a non-trivial set of datasets where their performance compared to NNs is not satisfactory. Heterophily has been considered the main cause of this empirical observation and numerous works have been put forward to address it. In this paper, we first revisit the widely used homophily metrics and point out that their consideration of only graph-label consistency is a shortcoming. Then, we study heterophily from the perspective of post-aggregation node similarity and define new homophily metrics, which are potentially advantageous compared to existing ones. Based on this investigation, we prove that some harmful cases of heterophily can be effectively addressed by local diversification operation. Then, we propose the Adaptive Channel Mixing (ACM), a framework to adaptively exploit aggregation, diversification and identity channels node-wisely to extract richer localized information for diverse node heterophily situations. ACM is more powerful than the commonly used uni-channel framework for node classification tasks on heterophilic graphs and is easy to be implemented in baseline GNN layers. When evaluated on 10 benchmark node classification tasks, ACM-augmented baselines consistently achieve significant performance gain, exceeding state-of-the-art GNNs on most tasks without incurring significant computational burden.
A Consciousness-Inspired Planning Agent for Model-Based Reinforcement Learning
We present an end-to-end, model-based deep reinforcement learning agent which dynamically attends to relevant parts of its state during plan… (voir plus)ning. The agent uses a bottleneck mechanism over a set-based representation to force the number of entities to which the agent attends at each planning step to be small. In experiments, we investigate the bottleneck mechanism with several sets of customized environments featuring different challenges. We consistently observe that the design allows the planning agents to generalize their learned task-solving abilities in compatible unseen environments by attending to the relevant objects, leading to better out-of-distribution generalization performance.