Portrait of Reihaneh Rabbany

Reihaneh Rabbany

Core Academic Member
Canada CIFAR AI Chair
Assistant Professor, McGill University, School of Computer Science
Research Topics
Data Mining
Graph Neural Networks
Learning on Graphs
Natural Language Processing
Representation Learning

Biography

Reihaneh Rabbany is an assistant professor at the School of Computer Science, McGill University, and a core academic member of Mila – Quebec Artificial Intelligence Institute. She is also a Canada CIFAR AI Chair and on the faculty of McGill’s Centre for the Study of Democratic Citizenship.

Before joining McGill, Rabbany was a postdoctoral fellow at the School of Computer Science, Carnegie Mellon University. She completed her PhD in the Department of Computing Science at the University of Alberta.

Rabbany heads McGill’s Complex Data Lab, where she conducts research at the intersection of network science, data mining and machine learning, with a focus on analyzing real-world interconnected data and social good applications.

Current Students

Master's Research - McGill University
Principal supervisor :
PhD - McGill University
Co-supervisor :
Collaborating researcher - McGill University
Collaborating Alumni - University of Mannheim
Principal supervisor :
Independent visiting researcher
PhD - McGill University
Co-supervisor :
Master's Research - McGill University
Research Intern - Université de Montréal
Master's Research - McGill University
Co-supervisor :
PhD - McGill University
Master's Research - McGill University
Master's Research - McGill University
Co-supervisor :
Postdoctorate - McGill University
Collaborating researcher
Principal supervisor :
McGill University
Master's Research - McGill University
Research Intern - Université de Montréal
Collaborating researcher - McGill University
PhD - McGill University
Research Intern - Université de Montréal

Publications

UTG: Towards a Unified View of Snapshot and Event Based Models for Temporal Graphs
Shenyang Huang
Farimah Poursafaei
Emanuele Rossi
Game On, Hate Off: A Study of Toxicity in Online Multiplayer Environments
Zachary Yang
Nicolas Grenon-Godbout
TGB 2.0: A Benchmark for Learning on Temporal Knowledge Graphs and Heterogeneous Graphs
Julia Gastinger
Shenyang Huang
Mikhail Galkin
Erfan Loghmani
Ali Parviz
Farimah Poursafaei
Jacob Danovitch
Emanuele Rossi
Ioannis Koutis
Heiner Stuckenschmidt
Towards Neural Scaling Laws for Foundation Models on Temporal Graphs
Razieh Shirzadkhani
Tran Gia Bao Ngo
Kiarash Shamsi
Shenyang Huang
Farimah Poursafaei
Poupak Azad
Baris Coskunuzer
Cuneyt Gurcan Akcora
The field of temporal graph learning aims to learn from evolving network data to forecast future interactions. Given a collection of observe… (see more)d temporal graphs, is it possible to predict the evolution of an unseen network from the same domain? To answer this question, we first present the Temporal Graph Scaling (TGS) dataset, a large collection of temporal graphs consisting of eighty-four ERC20 token transaction networks collected from 2017 to 2023. Next, we evaluate the transferability of Temporal Graph Neural Networks (TGNNs) for the temporal graph property prediction task by pre-training on a collection of up to sixty-four token transaction networks and then evaluating the downstream performance on twenty unseen token networks. We find that the neural scaling law observed in NLP and Computer Vision also applies in temporal graph learning, where pre-training on greater number of networks leads to improved downstream performance. To the best of our knowledge, this is the first empirical demonstration of the transferability of temporal graphs learning. On downstream token networks, the largest pre-trained model outperforms single model TGNNs on thirteen unseen test networks. Therefore, we believe that this is a promising first step towards building foundation models for temporal graphs.
Static graph approximations of dynamic contact networks for epidemic forecasting
Razieh Shirzadkhani
Shenyang Huang
Abby Leung
T-NET: Weakly Supervised Graph Learning for Combatting Human Trafficking
Pratheeksha Nair
Javin Liu
Catalina Vajiac
Andreas Olligschlaeger
Duen Horng Chau
Mirela T. Cazzolato
Cara Jones
Christos Faloutsos
Human trafficking (HT) for forced sexual exploitation, often described as modern-day slavery, is a pervasive problem that affects millions o… (see more)f people worldwide. Perpetrators of this crime post advertisements (ads) on behalf of their victims on adult service websites (ASW). These websites typically contain hundreds of thousands of ads including those posted by independent escorts, massage parlor agencies and spammers (fake ads). Detecting suspicious activity in these ads is difficult and developing data-driven methods is challenging due to the hard-to-label, complex and sensitive nature of the data. In this paper, we propose T-Net, which unlike previous solutions, formulates this problem as weakly supervised classification. Since it takes several months to years to investigate a case and obtain a single definitive label, we design domain-specific signals or indicators that provide weak labels. T-Net also looks into connections between ads and models the problem as a graph learning task instead of classifying ads independently. We show that T-Net outperforms all baselines on a real-world dataset of ads by 7% average weighted F1 score. Given that this data contains personally identifiable information, we also present a realistic data generator and provide the first publicly available dataset in this domain which may be leveraged by the wider research community.
Towards Foundational Models for Molecular Learning on Large-Scale Multi-Task Datasets
Shenyang Huang
Joao Alex Cunha
Zhiyi Li
Gabriela Moisescu-Pareja
Oleksandr Dymov
Samuel Maddrell-Mander
Callum McLean
Frederik Wenkel
Luis Müller
Jama Hussein Mohamud
Ali Parviz
Michael Craig
Michał Koziarski
Jiarui Lu
Zhaocheng Zhu
Cristian Gabellini
Kerstin Klaser
Josef Dean
Cas Wognum … (see 15 more)
Maciej Sypetkowski
Christopher Morris
Ioannis Koutis
Prudencio Tossou
Hadrien Mary
Therence Bois
Andrew William Fitzgibbon
Blazej Banaszewski
Chad Martin
Dominic Masters
Recently, pre-trained foundation models have enabled significant advancements in multiple fields. In molecular machine learning, however, wh… (see more)ere datasets are often hand-curated, and hence typically small, the lack of datasets with labeled features, and codebases to manage those datasets, has hindered the development of foundation models. In this work, we present seven novel datasets categorized by size into three distinct categories: ToyMix, LargeMix and UltraLarge. These datasets push the boundaries in both the scale and the diversity of supervised labels for molecular learning. They cover nearly 100 million molecules and over 3000 sparsely defined tasks, totaling more than 13 billion individual labels of both quantum and biological nature. In comparison, our datasets contain 300 times more data points than the widely used OGB-LSC PCQM4Mv2 dataset, and 13 times more than the quantum-only QM1B dataset. In addition, to support the development of foundational models based on our proposed datasets, we present the Graphium graph machine learning library which simplifies the process of building and training molecular machine learning models for multi-task and multi-level molecular datasets. Finally, we present a range of baseline results as a starting point of multi-task and multi-level training on these datasets. Empirically, we observe that performance on low-resource biological datasets show improvement by also training on large amounts of quantum data. This indicates that there may be potential in multi-task and multi-level training of a foundation model and fine-tuning it to resource-constrained downstream tasks. The Graphium library is publicly available on Github and the dataset links are available in Part 1 and Part 2.
Combining Confidence Elicitation and Sample-based Methods for Uncertainty Quantification in Misinformation Mitigation
Mauricio Rivera
Jean-François Godbout
Kellin Pelrine
Comparing GPT-4 and Open-Source Language Models in Misinformation Mitigation
Tyler Vergho
Jean-François Godbout
Kellin Pelrine
Recent large language models (LLMs) have been shown to be effective for misinformation detection. However, the choice of LLMs for experiment… (see more)s varies widely, leading to uncertain conclusions. In particular, GPT-4 is known to be strong in this domain, but it is closed source, potentially expensive, and can show instability between different versions. Meanwhile, alternative LLMs have given mixed results. In this work, we show that Zephyr-7b presents a consistently viable alternative, overcoming key limitations of commonly used approaches like Llama-2 and GPT-3.5. This provides the research community with a solid open-source option and shows open-source models are gradually catching up on this task. We then highlight how GPT-3.5 exhibits unstable performance, such that this very widely used model could provide misleading results in misinformation detection. Finally, we validate new tools including approaches to structured output and the latest version of GPT-4 (Turbo), showing they do not compromise performance, thus unlocking them for future research and potentially enabling more complex pipelines for misinformation mitigation.
Laplacian Change Point Detection for Single and Multi-view Dynamic Graphs
Shenyang Huang
Samy Coulombe
Yasmeen Hitti
Dynamic graphs are rich data structures that are used to model complex relationships between entities over time. In particular, anomaly dete… (see more)ction in temporal graphs is crucial for many real-world applications such as intrusion identification in network systems, detection of ecosystem disturbances, and detection of epidemic outbreaks. In this article, we focus on change point detection in dynamic graphs and address three main challenges associated with this problem: (i) how to compare graph snapshots across time, (ii) how to capture temporal dependencies, and (iii) how to combine different views of a temporal graph. To solve the above challenges, we first propose Laplacian Anomaly Detection (LAD) which uses the spectrum of graph Laplacian as the low dimensional embedding of the graph structure at each snapshot. LAD explicitly models short-term and long-term dependencies by applying two sliding windows. Next, we propose MultiLAD, a simple and effective generalization of LAD to multi-view graphs. MultiLAD provides the first change point detection method for multi-view dynamic graphs. It aggregates the singular values of the normalized graph Laplacian from different views through the scalar power mean operation. Through extensive synthetic experiments, we show that (i) LAD and MultiLAD are accurate and outperforms state-of-the-art baselines and their multi-view extensions by a large margin, (ii) MultiLAD’s advantage over contenders significantly increases when additional views are available, and (iii) MultiLAD is highly robust to noise from individual views. In five real-world dynamic graphs, we demonstrate that LAD and MultiLAD identify significant events as top anomalies such as the implementation of government COVID-19 interventions which impacted the population mobility in multi-view traffic networks.
GPS-SSL: Guided Positive Sampling to Inject Prior Into Self-Supervised Learning
Aarash Feizi
Randall Balestriero
Arantxa Casanova
We propose Guided Positive Sampling Self-Supervised Learning (GPS-SSL), a general method to inject a priori knowledge into Self-Supervised L… (see more)earning (SSL) positive samples selection. Current SSL methods leverage Data-Augmentations (DA) for generating positive samples and incorporate prior knowledge - an incorrect, or too weak DA will drastically reduce the quality of the learned representation. GPS-SSL proposes instead to design a metric space where Euclidean distances become a meaningful proxy for semantic relationship. In that space, it is now possible to generate positive samples from nearest neighbor sampling. Any prior knowledge can now be embedded into that metric space independently from the employed DA. From its simplicity, GPS-SSL is applicable to any SSL method, e.g. SimCLR or BYOL. A key benefit of GPS-SSL is in reducing the pressure in tailoring strong DAs. For example GPS-SSL reaches 85.58% on Cifar10 with weak DA while the baseline only reaches 37.51%. We therefore move a step forward towards the goal of making SSL less reliant on DA. We also show that even when using strong DAs, GPS-SSL outperforms the baselines on under-studied domains. We evaluate GPS-SSL along with multiple baseline SSL methods on numerous downstream datasets from different domains when the models use strong or minimal data augmentations. We hope that GPS-SSL will open new avenues in studying how to inject a priori knowledge into SSL in a principled manner.
Uncertainty Resolution in Misinformation Detection
Yury Orlovskiy
Camille Thibault
Anne Imouza
Jean-François Godbout
Kellin Pelrine