Portrait of Nicolas Le Roux

Nicolas Le Roux

Core Industry Member
Canada CIFAR AI Chair
Adjunct Professor, McGill University, School of Computer Science
Adjunct Professor, Université de Montréal, Department of Computer Science and Operations Research
Research Scientist, Microsoft Research
Research Topics
Deep Learning
Generative Models
Optimization
Reinforcement Learning

Biography

I am an academic researcher with expertise in machine learning, computer vision, neural networks, deep learning, optimization, large-scale learning and statistical modelling in general.

Current Students

PhD - Université de Montréal
Principal supervisor :
Master's Research - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
Master's Research - McGill University
Co-supervisor :
Postdoctorate
Co-supervisor :

Publications

Improving Context-Aware Preference Modeling for Language Models
Silviu Pitis
Ziang Xiao
While finetuning language models from pairwise preferences has proven remarkably effective, the underspecified nature of natural language pr… (see more)esents critical challenges. Direct preference feedback is uninterpretable, difficult to provide where multidimensional criteria may apply, and often inconsistent, either because it is based on incomplete instructions or provided by diverse principals. To address these challenges, we consider the two-step preference modeling procedure that first resolves the under-specification by selecting a context, and then evaluates preference with respect to the chosen context. We decompose reward modeling error according to these two steps, which suggests that supervising context in addition to context-specific preference may be a viable approach to aligning models with diverse human preferences. For this to work, the ability of models to evaluate context-specific preference is critical. To this end, we contribute context-conditioned preference datasets and accompanying experiments that investigate the ability of language models to evaluate context-specific preference. We use our datasets to (1) show that existing preference models benefit from, but fail to fully consider, added context, (2) finetune a context-aware reward model with context-specific performance exceeding that of GPT-4 and Llama 3 70B on tested datasets, and (3) investigate the value of context-aware preference modeling.
Language-guided Skill Learning with Temporal Variational Inference
Haotian Fu
Pratyusha Sharma
Elias Stengel-Eskin
George Konidaris
Marc-Alexandre Côté
Xingdi Yuan
Towards Modular LLMs by Building and Reusing a Library of LoRAs
Oleksiy Ostapenko
Zhan Su
Edoardo Ponti
Matheus Pereira
Lucas Caccia
Towards Modular LLMs by Building and Reusing a Library of LoRAs
Oleksiy Ostapenko
Zhan Su
Edoardo Ponti
Matheus Pereira
Lucas Caccia
The growing number of parameter-efficient adaptations of a base large language model (LLM) calls for studying whether we can reuse such trai… (see more)ned adapters to improve performance for new tasks. We study how to best build a library of adapters given multi-task data and devise techniques for both zero-shot and supervised task generalization through routing in such library. We benchmark existing approaches to build this library and introduce model-based clustering, MBC, a method that groups tasks based on the similarity of their adapter parameters, indirectly optimizing for transfer across the multi-task dataset. To re-use the library, we present a novel zero-shot routing mechanism, Arrow, which enables dynamic selection of the most relevant adapters for new inputs without the need for retraining. We experiment with several LLMs, such as Phi-2 and Mistral, on a wide array of held-out tasks, verifying that MBC-based adapters and Arrow routing lead to superior generalization to new tasks. We make steps towards creating modular, adaptable LLMs that can match or outperform traditional joint training.
Language-guided Skill Learning with Temporal Variational Inference
Haotian Fu
Pratyusha Sharma
Elias Stengel-Eskin
George Konidaris
Marc-Alexandre Côté
Xingdi Yuan
We present an algorithm for skill discovery from expert demonstrations. The algorithm first utilizes Large Language Models (LLMs) to propose… (see more) an initial segmentation of the trajectories. Following that, a hierarchical variational inference framework incorporates the LLM-generated segmentation information to discover reusable skills by merging trajectory segments. To further control the trade-off between compression and reusability, we introduce a novel auxiliary objective based on the Minimum Description Length principle that helps guide this skill discovery process. We test our system on BabyAI, a grid world navigation environment, as well as ALFRED, a household simulation environment.Our results demonstrate that agents equipped with our method can discover skills that help accelerate learning and outperform baseline skill learning approaches on new long-horizon tasks.
Unraveling the Interconnected Axes of Heterogeneity in Machine Learning for Democratic and Inclusive Advancements
Maryam Molamohammadi
Afaf Taïk
A Case Study of Instruction Tuning with Mixture of Parameter-Efficient Experts
Oleksiy Ostapenko
Lucas Caccia
Zhan Su
We study the applicability of mixture of parameter-efficient experts (MoPEs) for instruction-tuning large decoder-only language models. Rece… (see more)nt literature indicates that MoPEs might enhance performance in specific multi-task instruction-following datasets. In this paper, we extend such previous results and study applicability of MoPEs in settings previously overlooked: a) with open-domain instruction-following datasets; b) with recent decoder-only models and c) with downstream out-of-distribution test sets. We build on top of LLaMA1-13B/-7B and LLaMA2-13B. We study different variants of learned routing, namely per-example routing ([PE]), and a more expensive per-token ([PT]) routing. Overall, we are unable to substantiate strong performance gains observed in related studies in our setting. We observe occasional enhancements of LLAMA2 fine-tuned on Open Platypus dataset in 0-shot SNI evaluation and TruthfulQA evaluation after fine-tuning on a subset of Flan. We shed some light on the inner workings of MoPEs by comparing different routing strategies. We find that [PE] routing tends to collapse at downstream evaluation time reducing the importance of router's application. We plan to publicly release our code.
Surrogate Minimization: An Optimization Algorithm for Training Large Neural Networks with Model Parallelism
Reza Asad
Reza Babanezhad Harikandeh
Issam Hadj Laradji
Sharan Vaswani
Decision-Aware Actor-Critic with Function Approximation and Theoretical Guarantees
Sharan Vaswani
Amirreza Kazemi
Reza Babanezhad Harikandeh
Actor-critic (AC) methods are widely used in reinforcement learning (RL) and benefit from the flexibility of using any policy gradient metho… (see more)d as the actor and value-based method as the critic. The critic is usually trained by minimizing the TD error, an objective that is potentially decorrelated with the true goal of achieving a high reward with the actor. We address this mismatch by designing a joint objective for training the actor and critic in a decision-aware fashion. We use the proposed objective to design a generic, AC algorithm that can easily handle any function approximation. We explicitly characterize the conditions under which the resulting algorithm guarantees monotonic policy improvement, regardless of the choice of the policy and critic parameterization. Instantiating the generic algorithm results in an actor that involves maximizing a sequence of surrogate functions (similar to TRPO, PPO) and a critic that involves minimizing a closely connected objective. Using simple bandit examples, we provably establish the benefit of the proposed critic objective over the standard squared error. Finally, we empirically demonstrate the benefit of our decision-aware actor-critic framework on simple RL problems.
Joint Prompt Optimization of Stacked LLMs using Variational Inference
Eric Yuan
Xingdi Yuan
Marc-Alexandre Côté
Matheus Pereira
Adam Trischler
Ziang Xiao
Arian Hosseini
Friederike Niedtner
Large language models (LLMs) can be seen as atomic units of computation mapping sequences to a distribution over sequences. Thus, they can b… (see more)e seen as stochastic language layers in a language network, where the learnable parameters are the natural language prompts at each layer. By stacking two such layers and feeding the output of one layer to the next, we obtain a Deep Language Network (DLN). We first show how to effectively perform prompt optimization for a 1-Layer language network (DLN-1). Then, we present an extension that applies to 2-layer DLNs (DLN-2), where two prompts must be learned. The key idea is to consider the output of the first layer as a latent variable, which requires inference, and prompts to be learned as the parameters of the generative distribution. We first test the effectiveness of DLN-1 in multiple reasoning and natural language understanding tasks. Then, we show that DLN-2 can reach higher performance than a single layer, showing promise that we might reach comparable performance to GPT-4, even when each LLM in the network is smaller and less powerful.
Multi-Head Adapter Routing for Cross-Task Generalization
Lucas Caccia
Edoardo Ponti
Zhan Su
Matheus Pereira
Parameter-efficient fine-tuning (PEFT) for cross-task generalization consists in pre-training adapters on a multi-task training set before f… (see more)ew-shot adaptation to test tasks. Polytropon [Ponti et al., 2023] (
Target-based Surrogates for Stochastic Optimization
Jonathan Wilder Lavington
Sharan Vaswani
Reza Babanezhad Harikandeh
Mark Schmidt
We consider minimizing functions for which it is expensive to compute the gradient. Such functions are prevalent in reinforcement learning, … (see more)imitation learning and bilevel optimization. Our target optimization framework uses the (expensive) gradient computation to construct surrogate functions in a \emph{target space} (e.g. the logits output by a linear model for classification) that can be minimized efficiently. This allows for multiple parameter updates to the model, amortizing the cost of gradient computation. In the full-batch setting, we prove that our surrogate is a global upper-bound on the loss, and can be (locally) minimized using a black-box optimization algorithm. We prove that the resulting majorization-minimization algorithm ensures convergence to a stationary point of the loss. Next, we instantiate our framework in the stochastic setting and propose the