Portrait of Alessandro Sordoni

Alessandro Sordoni

Core Industry Member
Adjunct professor, Université de Montréal, Department of Computer Science and Operations Research
Research Scientist, Microsoft Research Montréal
Research Topics
Large Language Models (LLM)
Natural Language Processing
Reasoning

Biography

I am a principal researcher at Microsoft Research Montréal.

For my PhD at Université de Montréal under the direction of Jian-Yun Nie, I investigated how to effectively represent documents and queries for information retrieval.

Recently, I have been motivated to study the efficiency of learning and systematic generalization in current large deep learning models. My interests span the fields of unsupervised learning and few-shot learning, especially in NLP.

Current Students

Collaborating Alumni - University of Copenhagen

Publications

debug-gym: A Text-Based Environment for Interactive Debugging
Xingdi Yuan
Morgane M Moss
Charbel Feghali
Chinmay Singh
Darya Moldavskaya
Drew MacPhee
Lucas Caccia
Matheus Pereira
Minseon Kim
Marc-Alexandre Côté
debug-gym: A Text-Based Environment for Interactive Debugging
Xingdi Yuan
Morgane M Moss
Charbel Feghali
Chinmay Singh
Darya Moldavskaya
Drew MacPhee
Lucas Caccia
Matheus Pereira
Minseon Kim
Marc-Alexandre Côté
Exploring Sparse Adapters for Scalable Merging of Parameter Efficient Experts
Samin Yeasar Arnob
Zhan Su
Minseon Kim
Oleksiy Ostapenko
Lucas Caccia
Merging parameter-efficient task experts has recently gained growing attention as a way to build modular architectures that can be rapidly a… (see more)dapted on the fly for specific downstream tasks, without requiring additional fine-tuning. Typically, LoRA (Low-Rank Adaptation) serves as the foundational building block of such parameter-efficient modular architectures, leveraging low-rank weight structures to reduce the number of trainable parameters. In this paper, we study the properties of sparse adapters, which train only a subset of weights in the base neural network, as potential building blocks of modular architectures. First, we propose a simple method for training highly effective sparse adapters, which is conceptually simpler than existing methods in the literature and surprisingly outperforms both LoRA and full fine-tuning in our setting. Next, we investigate the merging properties of these sparse adapters by merging adapters for up to 20 natural language processing tasks, thus scaling beyond what is usually studied in the literature. Our findings demonstrate that sparse adapters yield superior in-distribution performance post-merging compared to LoRA or full model merging. Achieving strong held-out performance remains a challenge for all methods considered.
Training Plug n' Play Knowledge Modules with Deep Context Distillation
Lucas Caccia
Alan Ansell
Ivan Vulić
Edoardo Ponti
Dynamically integrating new or rapidly evolving information after Language Model (LM) pre-training remains challenging, particularly in low-… (see more)data scenarios or when dealing with private and specialized documents. In-context learning and retrieval-augmented generation (RAG) face limitations, including their high inference costs and their inability to capture global document information. In this paper, we propose a way of modularizing knowledge by training Knowledge Modules (KMs). KMs are lightweight components implemented as parameter-efficient LoRA modules, which are trained to store information about new documents and can be easily plugged into models on demand. We show that next-token prediction performs poorly in training KMs. We instead propose Deep Context Distillation: we learn KMs parameters such as to simulate hidden states and logits of a teacher that takes the document in context. Our method outperforms standard next-token prediction and pre-instruction training techniques, across two datasets. Finally, we highlight synergies between KMs and retrieval-augmented generation.
Training Plug-n-Play Knowledge Modules with Deep Context Distillation
Lucas Caccia
Alan Ansell
Ivan Vulić
Edoardo Ponti
Not All LLM Reasoners Are Created Equal
Arian Hosseini
Daniel Toyama
VinePPO: Accurate Credit Assignment in RL for LLM Mathematical Reasoning
Large language models (LLMs) are increasingly required to solve complex reasoning tasks, like mathematical problems, that involve multiple r… (see more)easoning steps before feedback is received. Effectively identifying and prioritizing key steps by accurately assigning credit to these intermediate steps is essential for enhancing model performance. Proximal Policy Optimization (PPO), a state-of-the-art reinforcement learning algorithm for finetuning LLMs, addresses the credit assignment problem by employing value networks to predict the expected cumulative rewards of intermediate states. In this work, we identify significant limitations with this value estimation method. To address this, we propose \methodname that leverages the flexibility of language environments to compute unbiased Monte Carlo-based estimates of the intermediate values. VinePPO consistently outperforms standard PPO, doing so more efficiently and with lower divergence from the reference model. Our findings underscore the critical importance of accurate credit assignment in LLM post-training and present a simple, yet effective solution.
VinePPO: Accurate Credit Assignment in RL for LLM Mathematical Reasoning
Large language models (LLMs) are increasingly required to solve complex reasoning tasks, like mathematical problems, that involve multiple r… (see more)easoning steps before feedback is received. Effectively identifying and prioritizing key steps by accurately assigning credit to these intermediate steps is essential for enhancing model performance. Proximal Policy Optimization (PPO), a state-of-the-art reinforcement learning algorithm for finetuning LLMs, addresses the credit assignment problem by employing value networks to predict the expected cumulative rewards of intermediate states. In this work, we identify significant limitations with this value estimation method. To address this, we propose \methodname that leverages the flexibility of language environments to compute unbiased Monte Carlo-based estimates of the intermediate values. VinePPO consistently outperforms standard PPO, doing so more efficiently and with lower divergence from the reference model. Our findings underscore the critical importance of accurate credit assignment in LLM post-training and present a simple, yet effective solution.
Not All LLM Reasoners Are Created Equal
Arian Hosseini
Daniel Toyama
We study the depth of grade-school math (GSM) problem-solving capabilities of LLMs. To this end, we evaluate their performance on pairs of e… (see more)xisting math word problems together so that the answer to the second problem depends on correctly answering the first problem. Our findings reveal a significant reasoning gap in most LLMs, that is performance difference between solving the compositional pairs and solving each question independently. This gap is more pronounced in smaller, more cost-efficient, and math-specialized models. Moreover, instruction-tuning recipes and code generation have varying effects across LLM sizes, while finetuning on GSM can lead to task overfitting. Our analysis indicates that large reasoning gaps are not because of test-set leakage, but due to distraction from additional context and poor second-hop reasoning. Overall, LLMs exhibit systematic differences in their reasoning abilities, despite what their performance on standard benchmarks indicates.
VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment
Large language models (LLMs) are increasingly applied to complex reasoning tasks that require executing several complex steps before receivi… (see more)ng any reward. Properly assigning credit to these steps is essential for enhancing model performance. Proximal Policy Optimization (PPO), a state-of-the-art reinforcement learning (RL) algorithm used for LLM finetuning, employs value networks to tackle credit assignment. However, value networks face challenges in predicting the expected cumulative rewards accurately in complex reasoning tasks, often leading to high-variance updates and suboptimal performance. In this work, we systematically evaluate the efficacy of value networks and reveal their significant shortcomings in reasoning-heavy LLM tasks, showing that they barely outperform a random baseline when comparing alternative steps. To address this, we propose VinePPO, a straightforward approach that leverages the flexibility of language environments to compute unbiased Monte Carlo-based estimates, bypassing the need for large value networks. Our method consistently outperforms PPO and other RL-free baselines across MATH and GSM8K datasets with fewer gradient updates (up to 9x), less wall-clock time (up to 3.0x). These results emphasize the importance of accurate credit assignment in RL finetuning of LLM and demonstrate VinePPO's potential as a superior alternative.
VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment
Large language models (LLMs) are increasingly applied to complex reasoning tasks that require executing several complex steps before receivi… (see more)ng any reward. Properly assigning credit to these steps is essential for enhancing model performance. Proximal Policy Optimization (PPO), a state-of-the-art reinforcement learning (RL) algorithm used for LLM finetuning, employs value networks to tackle credit assignment. However, value networks face challenges in predicting the expected cumulative rewards accurately in complex reasoning tasks, often leading to high-variance updates and suboptimal performance. In this work, we systematically evaluate the efficacy of value networks and reveal their significant shortcomings in reasoning-heavy LLM tasks, showing that they barely outperform a random baseline when comparing alternative steps. To address this, we propose VinePPO, a straightforward approach that leverages the flexibility of language environments to compute unbiased Monte Carlo-based estimates, bypassing the need for large value networks. Our method consistently outperforms PPO and other RL-free baselines across MATH and GSM8K datasets with fewer gradient updates (up to 9x), less wall-clock time (up to 3.0x). These results emphasize the importance of accurate credit assignment in RL finetuning of LLM and demonstrate VinePPO's potential as a superior alternative.
VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment