Portrait of Alessandro Sordoni

Alessandro Sordoni

Core Industry Member
Adjunct professor, Université de Montréal, Department of Computer Science and Operations Research
Research Scientist, Microsoft Research Montréal
Research Topics
Large Language Models (LLM)
Natural Language Processing
Reasoning

Biography

I am a principal researcher at Microsoft Research Montréal.

For my PhD at Université de Montréal under the direction of Jian-Yun Nie, I investigated how to effectively represent documents and queries for information retrieval.

Recently, I have been motivated to study the efficiency of learning and systematic generalization in current large deep learning models. My interests span the fields of unsupervised learning and few-shot learning, especially in NLP.

Current Students

Collaborating Alumni - University of Copenhagen

Publications

Twin Networks: Matching the Future for Sequence Generation
Dmitriy Serdyuk
Nan Rosemary Ke
Adam Trischler
We propose a simple technique for encouraging generative RNNs to plan ahead. We train a "backward" recurrent network to generate a given seq… (see more)uence in reverse order, and we encourage states of the forward model to predict cotemporal states of the backward model. The backward network is used only during training, and plays no role during sampling or inference. We hypothesize that our approach eases modeling of long-term dependencies by implicitly forcing the forward states to hold information about the longer-term future (as contained in the backward states). We show empirically that our approach achieves 9% relative improvement for a speech recognition task, and achieves significant improvement on a COCO caption generation task.
A Hierarchical Latent Variable Encoder-Decoder Model for Generating Dialogues
Sequential data often possesses hierarchical structures with complex dependencies between sub-sequences, such as found between the utterance… (see more)s in a dialogue. To model these dependencies in a generative framework, we propose a neural network-based generative architecture, with stochastic latent variables that span a variable number of time steps. We apply the proposed model to the task of dialogue response generation and compare it with other recent neural-network architectures. We evaluate the model performance through a human evaluation study. The experiments demonstrate that our model improves upon recently proposed models and that the latent variables facilitate both the generation of meaningful, long and diverse responses and maintaining dialogue state.
Z-Forcing: Training Stochastic Recurrent Networks
Anirudh Goyal
Marc-Alexandre Côté
Nan Rosemary Ke
Many efforts have been devoted to training generative latent variable models with autoregressive decoders, such as recurrent neural networks… (see more) (RNN). Stochastic recurrent models have been successful in capturing the variability observed in natural sequential data such as speech. We unify successful ideas from recently proposed architectures into a stochastic recurrent model: each step in the sequence is associated with a latent variable that is used to condition the recurrent dynamics for future steps. Training is performed with amortized variational inference where the approximate posterior is augmented with a RNN that runs backward through the sequence. In addition to maximizing the variational lower bound, we ease training of the latent variables by adding an auxiliary cost which forces them to reconstruct the state of the backward recurrent network. This provides the latent variables with a task-independent objective that enhances the performance of the overall model. We found this strategy to perform better than alternative approaches such as KL annealing. Although being conceptually simple, our model achieves state-of-the-art results on standard speech benchmarks such as TIMIT and Blizzard and competitive performance on sequential MNIST. Finally, we apply our model to language modeling on the IMDB dataset where the auxiliary cost helps in learning interpretable latent variables. Source Code: this https URL
Building End-To-End Dialogue Systems Using Generative Hierarchical Neural Network Models
We investigate the task of building open domain, conversational dialogue systems based on large dialogue corpora using generative models. Ge… (see more)nerative models produce system responses that are autonomously generated word-by-word, opening up the possibility for realistic, flexible interactions. In support of this goal, we extend the recently proposed hierarchical recurrent encoder-decoder neural network to the dialogue domain, and demonstrate that this model is competitive with state-of-the-art neural language models and back-off n-gram models. We investigate the limitations of this and similar approaches, and show how its performance can be improved by bootstrapping the learning from a larger question-answer pair corpus and from pretrained word embeddings.