Portrait of Alessandro Sordoni

Alessandro Sordoni

Core Industry Member
Adjunct professor, Université de Montréal, Department of Computer Science and Operations Research
Research Scientist, Microsoft Research Montréal
Research Topics
Large Language Models (LLM)
Natural Language Processing
Reasoning

Biography

I am a principal researcher at Microsoft Research Montréal.

For my PhD at Université de Montréal under the direction of Jian-Yun Nie, I investigated how to effectively represent documents and queries for information retrieval.

Recently, I have been motivated to study the efficiency of learning and systematic generalization in current large deep learning models. My interests span the fields of unsupervised learning and few-shot learning, especially in NLP.

Current Students

Collaborating Alumni - University of Copenhagen

Publications

Expressiveness and Learnability: A Unifying View for Evaluating Self-Supervised Learning
Yuchen Lu
Zhen Liu
Aristide Baratin
Romain Laroche
Guiding Language Model Math Reasoning with Planning Tokens
Xinyi Wang
Lucas Caccia
Oleksiy Ostapenko
Xingdi Yuan
William Yang Wang
Large language models (LLMs) have recently attracted considerable interest for their ability to perform complex reasoning tasks, such as cha… (see more)in-of-thought reasoning. However, most of the existing approaches to enhance this ability rely heavily on data-driven methods, while neglecting the structural aspects of the model's reasoning capacity. We find that while LLMs can manage individual reasoning steps well, they struggle with maintaining consistency across an entire reasoning chain. To solve this, we introduce planning tokens at the start of each reasoning step, serving as a guide for the model, and add their embeddings to the model parameters. Our approach requires a negligible increase in trainable parameters (just 0.001%) and can be applied through either full fine-tuning or a more parameter-efficient scheme. We demonstrate our method's effectiveness by applying it to three different LLMs, showing notable accuracy improvements across three math word problem datasets w.r.t. standard fine-tuning baselines.
Using Representation Expressiveness and Learnability to Evaluate Self-Supervised Learning Methods
Yuchen Lu
Zhen Liu
Aristide Baratin
Romain Laroche
On the Compositional Generalization Gap of In-Context Learning
Pretrained large generative language models have shown great performance on many tasks, but exhibit low compositional generalization abiliti… (see more)es. Scaling such models has been shown to improve their performance on various NLP tasks even just by conditioning them on a few examples to solve the task without any fine-tuning (also known as in-context learning). In this work, we look at the gap between the in-distribution (ID) and out-of-distribution (OOD) performance of such models in semantic parsing tasks with in-context learning. In the ID settings, the demonstrations are from the same split (\textit{test} or \textit{train}) that the model is being evaluated on, and in the OOD settings, they are from the other split. We look at how the relative generalization gap of in-context learning evolves as models are scaled up. We evaluate four model families, OPT, BLOOM, CodeGen and Codex on three semantic parsing datasets, CFQ, SCAN and GeoQuery with different number of exemplars, and observe a trend of decreasing relative generalization gap as models are scaled up.
Multi-Head Adapter Routing for Cross-Task Generalization
Lucas Caccia
Edoardo Ponti
Zhan Su
Matheus Pereira
Parameter-efficient fine-tuning (PEFT) for cross-task generalization consists in pre-training adapters on a multi-task training set before f… (see more)ew-shot adaptation to test tasks. Polytropon [Ponti et al., 2023] (
Does Pre-training Induce Systematic Inference? How Masked Language Models Acquire Commonsense Knowledge
Using Representation Expressiveness and Learnability to Evaluate Self-Supervised Learning Methods
Yuchen Lu
Zhen Liu
Aristide Baratin
Romain Laroche
Unsupervised Dependency Graph Network
Yikang Shen
Shawn Tan
Peng Li
Jie Zhou
Combining Modular Skills in Multitask Learning
Learning to Dequantise with Truncated Flows
Shawn Tan
Chin-Wei Huang
Dequantisation is a general technique used for transforming data described by a discrete random variable x into a continuous (latent) random… (see more) variable z, for the purpose of it being modeled by likelihood-based density models. Dequantisation was first introduced in the context of ordinal data, such as image pixel values. However, when the data is categorical, the dequantisation scheme is not obvious. We learn such a dequantisation scheme q(z|x), using variational inference with TRUncated FLows (TRUFL) — a novel flow-based model that allows the dequantiser to have a learnable truncated support. Unlike previous work, the TRUFL dequantiser is (i) capable of embedding the data losslessly in certain cases, since the truncation allows the conditional distributions q(z|x) to have non-overlapping bounded supports, while being (ii) trainable with back-propagation. Addtionally, since the support of the marginal q(z) is bounded and the support of prior p(z) is not, we propose to renormalise the prior distribution over the support of q(z). We derive a lower bound for training, and propose a rejection sampling scheme to account for the invalid samples. Experimentally, we benchmark TRUFL on constrained generation tasks, and find that it outperforms prior approaches. In addition, we find that rejection sampling results in higher validity for the constrained problems.
Multi-Head Adapter Routing for Data-Efficient Fine-Tuning
Lucas Caccia
Edoardo Ponti
Lu Liu
Matheus Pereira
Parameter-efficient fine-tuning (PEFT) methods can adapt large language models to downstream tasks by training a small amount of newly add… (see more)ed parameters. In multi-task settings, PEFT adapters typically train on each task independently, inhibiting transfer across tasks, or on the concatenation of all tasks, which can lead to negative interference. To address this, Polytropon [Ponti et al., 2022] jointly learns an inventory of PEFT adapters and a routing function to share variable-size sets of adapters across tasks. Subsequently, adapters can be re-combined and fine-tuned on novel tasks even with limited data. In this paper, we investigate to what extent the ability to control which adapters are active for each task leads to sample-efficient generalization. Thus, we propose less expressive variants where we perform weighted averaging of the adapters before few-shot adaptation ( Poly - µ ) instead of learning a routing function. Moreover, we introduce more expressive variants where finer-grained task–adapter allocation is learned through a multi-head routing function ( Poly - S ). We test these variants on three separate benchmarks for multi-task learning. We find that Poly - S achieves gains on all three (up to 5.3 points on average) over strong baselines, while incurring a negligible additional cost in parameter count. In particular, we find that instruction tuning, where models are fully fine-tuned on natural language instructions for each task, is inferior to modular methods such as Polytropon and our proposed variants.
Unsupervised Dependency Graph Network
Yikang Shen
Shawn Tan
Peng Li
Jie Zhou
Recent work has identified properties of pretrained self-attention models that mirror those of dependency parse structures. In particular, s… (see more)ome self-attention heads correspond well to individual dependency types. Inspired by these developments, we propose a new competitive mechanism that encourages these attention heads to model different dependency relations. We introduce a new model, the Unsupervised Dependency Graph Network (UDGN), that can induce dependency structures from raw corpora and the masked language modeling task. Experiment results show that UDGN achieves very strong unsupervised dependency parsing performance without gold POS tags and any other external information. The competitive gated heads show a strong correlation with human-annotated dependency types. Furthermore, the UDGN can also achieve competitive performance on masked language modeling and sentence textual similarity tasks.