Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Well-designed open-source software drives progress in Machine Learning (ML) research. While static graph ML enjoys mature frameworks like Py… (see more)Torch Geometric and DGL, ML for temporal graphs (TG), networks that evolve over time, lacks comparable infrastructure. Existing TG libraries are often tailored to specific architectures, hindering support for diverse models in this rapidly evolving field. Additionally, the divide between continuous- and discrete-time dynamic graph methods (CTDG and DTDG) limits direct comparisons and idea transfer. To address these gaps, we introduce Temporal Graph Modelling (TGM), a research-oriented library for ML on temporal graphs, the first to unify CTDG and DTDG approaches. TGM offers first-class support for dynamic node features, time-granularity conversions, and native handling of link-, node-, and graph-level tasks. Empirically, TGM achieves an average 7.8x speedup across multiple models, datasets, and tasks compared to the widely used DyGLib, and an average 175x speedup on graph discretization relative to available implementations. Beyond efficiency, we show in our experiments how TGM unlocks entirely new research possibilities by enabling dynamic graph property prediction and time-driven training paradigms, opening the door to questions previously impractical to study. TGM is available at https://github.com/tgm-team/tgm
Well-designed open-source software drives progress in Machine Learning (ML) research. While static graph ML enjoys mature frameworks like Py… (see more)Torch Geometric and DGL, ML for temporal graphs (TG), networks that evolve over time, lacks comparable infrastructure. Existing TG libraries are often tailored to specific architectures, hindering support for diverse models in this rapidly evolving field. Additionally, the divide between continuous- and discrete-time dynamic graph methods (CTDG and DTDG) limits direct comparisons and idea transfer. To address these gaps, we introduce Temporal Graph Modelling (TGM), a research-oriented library for ML on temporal graphs, the first to unify CTDG and DTDG approaches. TGM offers first-class support for dynamic node features, time-granularity conversions, and native handling of link-, node-, and graph-level tasks. Empirically, TGM achieves an average 7.8x speedup across multiple models, datasets, and tasks compared to the widely used DyGLib, and an average 175x speedup on graph discretization relative to available implementations. Beyond efficiency, we show in our experiments how TGM unlocks entirely new research possibilities by enabling dynamic graph property prediction and time-driven training paradigms, opening the door to questions previously impractical to study. TGM is available at https://github.com/tgm-team/tgm
While deep learning on static graphs has been revolutionized by standardized libraries like PyTorch Geometric and DGL, machine learning on T… (see more)emporal Graphs (TG), networks that evolve over time, lacks comparable software infrastructure. Existing TG libraries are limited in scope, focusing on a single method category or specific algorithms. We introduce Temporal Graph Modelling (TGM), a comprehensive framework for machine learning on temporal graphs to address this gap. Through a modular architecture, TGM is the first library to support both discrete and continuous-time TG methods and implements a wide range of TG methods. The TGM framework combines an intuitive front-end API with an optimized backend storage, enabling reproducible research and efficient experimentation at scale. Key features include graph-level optimizations for offline training and built-in performance profiling capabilities. Through extensive benchmarking on five real-world networks, TGM is up to 6 times faster than the widely used DyGLib library on TGN and TGAT models and up to 8 times faster than the UTG framework for converting edges into coarse-grained snapshots.