Portrait of Ali Parviz

Ali Parviz

Collaborating researcher - Ying Wu Coll of Computing
Supervisor
Research Topics
Generative Models
Graph Neural Networks
Learning on Graphs
Molecular Modeling
Spectral Learning

Publications

TGM: A Modular Framework for Machine Learning on Temporal Graphs
While deep learning on static graphs has been revolutionized by standardized libraries like PyTorch Geometric and DGL, machine learning on T… (see more)emporal Graphs (TG), networks that evolve over time, lacks comparable software infrastructure. Existing TG libraries are limited in scope, focusing on a single method category or specific algorithms. We introduce Temporal Graph Modelling (TGM), a comprehensive framework for machine learning on temporal graphs to address this gap. Through a modular architecture, TGM is the first library to support both discrete and continuous-time TG methods and implements a wide range of TG methods. The TGM framework combines an intuitive front-end API with an optimized backend storage, enabling reproducible research and efficient experimentation at scale. Key features include graph-level optimizations for offline training and built-in performance profiling capabilities. Through extensive benchmarking on five real-world networks, TGM is up to 6 times faster than the widely used DyGLib library on TGN and TGAT models and up to 8 times faster than the UTG framework for converting edges into coarse-grained snapshots.
Are Large Language Models Good Temporal Graph Learners?
Large Language Models (LLMs) have recently driven significant advancements in Natural Language Processing and various other applications. Wh… (see more)ile a broad range of literature has explored the graph-reasoning capabilities of LLMs, including their use of predictors on graphs, the application of LLMs to dynamic graphs -- real world evolving networks -- remains relatively unexplored. Recent work studies synthetic temporal graphs generated by random graph models, but applying LLMs to real-world temporal graphs remains an open question. To address this gap, we introduce Temporal Graph Talker (TGTalker), a novel temporal graph learning framework designed for LLMs. TGTalker utilizes the recency bias in temporal graphs to extract relevant structural information, converted to natural language for LLMs, while leveraging temporal neighbors as additional information for prediction. TGTalker demonstrates competitive link prediction capabilities compared to existing Temporal Graph Neural Network (TGNN) models. Across five real-world networks, TGTalker performs competitively with state-of-the-art temporal graph methods while consistently outperforming popular models such as TGN and HTGN. Furthermore, TGTalker generates textual explanations for each prediction, thus opening up exciting new directions in explainability and interpretability for temporal link prediction. The code is publicly available at https://github.com/shenyangHuang/TGTalker.
Are Large Language Models Good Temporal Graph Learners?
Large Language Models (LLMs) have recently driven significant advancements in Natural Language Processing and various other applications. Wh… (see more)ile a broad range of literature has explored the graph-reasoning capabilities of LLMs, including their use of predictors on graphs, the application of LLMs to dynamic graphs -- real world evolving networks -- remains relatively unexplored. Recent work studies synthetic temporal graphs generated by random graph models, but applying LLMs to real-world temporal graphs remains an open question. To address this gap, we introduce Temporal Graph Talker (TGTalker), a novel temporal graph learning framework designed for LLMs. TGTalker utilizes the recency bias in temporal graphs to extract relevant structural information, converted to natural language for LLMs, while leveraging temporal neighbors as additional information for prediction. TGTalker demonstrates competitive link prediction capabilities compared to existing Temporal Graph Neural Network (TGNN) models. Across five real-world networks, TGTalker performs competitively with state-of-the-art temporal graph methods while consistently outperforming popular models such as TGN and HTGN. Furthermore, TGTalker generates textual explanations for each prediction, thus opening up exciting new directions in explainability and interpretability for temporal link prediction. The code is publicly available at https://github.com/shenyangHuang/TGTalker.
TGB 2.0: A Benchmark for Learning on Temporal Knowledge Graphs and Heterogeneous Graphs
Julia Gastinger
Mikhail Galkin
Erfan Loghmani
Jacob Danovitch
Emanuele Rossi
Ioannis Koutis
Heiner Stuckenschmidt
TGB 2.0: A Benchmark for Learning on Temporal Knowledge Graphs and Heterogeneous Graphs
Julia Gastinger
Mikhail Galkin
Erfan Loghmani
Jacob Danovitch
Emanuele Rossi
Ioannis Koutis
Heiner Stuckenschmidt
Multi-relational temporal graphs are powerful tools for modeling real-world data, capturing the evolving and interconnected nature of entiti… (see more)es over time. Recently, many novel models are proposed for ML on such graphs intensifying the need for robust evaluation and standardized benchmark datasets. However, the availability of such resources remains scarce and evaluation faces added complexity due to reproducibility issues in experimental protocols. To address these challenges, we introduce Temporal Graph Benchmark 2.0 (TGB 2.0), a novel benchmarking framework tailored for evaluating methods for predicting future links on Temporal Knowledge Graphs and Temporal Heterogeneous Graphs with a focus on large-scale datasets, extending the Temporal Graph Benchmark. TGB 2.0 facilitates comprehensive evaluations by presenting eight novel datasets spanning five domains with up to 53 million edges. TGB 2.0 datasets are significantly larger than existing datasets in terms of number of nodes, edges, or timestamps. In addition, TGB 2.0 provides a reproducible and realistic evaluation pipeline for multi-relational temporal graphs. Through extensive experimentation, we observe that 1) leveraging edge-type information is crucial to obtain high performance, 2) simple heuristic baselines are often competitive with more complex methods, 3) most methods fail to run on our largest datasets, highlighting the need for research on more scalable methods.
Towards Foundational Models for Molecular Learning on Large-Scale Multi-Task Datasets
Joao Alex Cunha
Zhiyi Li
Oleksandr Dymov
Samuel Maddrell-Mander
Callum McLean
Luis Müller
Jama Hussein Mohamud
Michael Craig
Michał Koziarski
Zhaocheng Zhu
Cristian Gabellini
Kerstin Klaser
Josef Dean
Cas Wognum … (see 15 more)
Maciej Sypetkowski
Christopher Morris
Ioannis Koutis
Prudencio Tossou
Hadrien Mary
Therence Bois
Andrew William Fitzgibbon
Blazej Banaszewski
Chad Martin
Dominic Masters
Recently, pre-trained foundation models have enabled significant advancements in multiple fields. In molecular machine learning, however, wh… (see more)ere datasets are often hand-curated, and hence typically small, the lack of datasets with labeled features, and codebases to manage those datasets, has hindered the development of foundation models. In this work, we present seven novel datasets categorized by size into three distinct categories: ToyMix, LargeMix and UltraLarge. These datasets push the boundaries in both the scale and the diversity of supervised labels for molecular learning. They cover nearly 100 million molecules and over 3000 sparsely defined tasks, totaling more than 13 billion individual labels of both quantum and biological nature. In comparison, our datasets contain 300 times more data points than the widely used OGB-LSC PCQM4Mv2 dataset, and 13 times more than the quantum-only QM1B dataset. In addition, to support the development of foundational models based on our proposed datasets, we present the Graphium graph machine learning library which simplifies the process of building and training molecular machine learning models for multi-task and multi-level molecular datasets. Finally, we present a range of baseline results as a starting point of multi-task and multi-level training on these datasets. Empirically, we observe that performance on low-resource biological datasets show improvement by also training on large amounts of quantum data. This indicates that there may be potential in multi-task and multi-level training of a foundation model and fine-tuning it to resource-constrained downstream tasks. The Graphium library is publicly available on Github and the dataset links are available in Part 1 and Part 2.
Long Range Graph Benchmark
Vijay Prakash Dwivedi
Ladislav Rampášek
Mikhail Galkin
Anh Tuan Luu
Graph Neural Networks (GNNs) that are based on the message passing (MP) paradigm generally exchange information between 1-hop neighbors to b… (see more)uild node representations at each layer. In principle, such networks are not able to capture long-range interactions (LRI) that may be desired or necessary for learning a given task on graphs. Recently, there has been an increasing interest in development of Transformer-based methods for graphs that can consider full node connectivity beyond the original sparse structure, thus enabling the modeling of LRI. However, MP-GNNs that simply rely on 1-hop message passing often fare better in several existing graph benchmarks when combined with positional feature representations, among other innovations, hence limiting the perceived utility and ranking of Transformer-like architectures. Here, we present the Long Range Graph Benchmark (LRGB) with 5 graph learning datasets: PascalVOC-SP, COCO-SP, PCQM-Contact, Peptides-func and Peptides-struct that arguably require LRI reasoning to achieve strong performance in a given task. We benchmark both baseline GNNs and Graph Transformer networks to verify that the models which capture long-range dependencies perform significantly better on these tasks. Therefore, these datasets are suitable for benchmarking and exploration of MP-GNNs and Graph Transformer architectures that are intended to capture LRI.