Portrait of Reihaneh Rabbany

Reihaneh Rabbany

Core Academic Member
Canada CIFAR AI Chair
Assistant Professor, McGill University, School of Computer Science
Research Topics
Data Mining
Graph Neural Networks
Learning on Graphs
Natural Language Processing
Representation Learning

Biography

Reihaneh Rabbany is an assistant professor at the School of Computer Science, McGill University, and a core academic member of Mila – Quebec Artificial Intelligence Institute. She is also a Canada CIFAR AI Chair and on the faculty of McGill’s Centre for the Study of Democratic Citizenship.

Before joining McGill, Rabbany was a postdoctoral fellow at the School of Computer Science, Carnegie Mellon University. She completed her PhD in the Department of Computing Science at the University of Alberta.

Rabbany heads McGill’s Complex Data Lab, where she conducts research at the intersection of network science, data mining and machine learning, with a focus on analyzing real-world interconnected data and social good applications.

Current Students

Collaborating researcher - Concordia University
Master's Research - McGill University
Master's Research - McGill University
Principal supervisor :
PhD - McGill University
Co-supervisor :
Collaborating Alumni - McGill University
Co-supervisor :
Research Intern - McGill University
Postdoctorate - McGill University
Principal supervisor :
Master's Research - McGill University
Co-supervisor :
Collaborating researcher - McGill University
Master's Research - McGill University
Collaborating researcher - McGill University
Co-supervisor :
Collaborating Alumni - McGill University
Collaborating researcher - McGill University University
Collaborating researcher - McGill University
Master's Research - Université de Montréal
Principal supervisor :
Collaborating researcher - McGill University
Collaborating researcher - Université de Montréal
Principal supervisor :
PhD - McGill University
Research Intern - McGill University
Master's Research - Université de Montréal
Principal supervisor :

Publications

OpenFake: An Open Dataset and Platform Toward Real-World Deepfake Detection
Deepfakes, synthetic media created using advanced AI techniques, pose a growing threat to information integrity, particularly in politically… (see more) sensitive contexts. This challenge is amplified by the increasing realism of modern generative models, which our human perception study confirms are often indistinguishable from real images. Yet, existing deepfake detection benchmarks rely on outdated generators or narrowly scoped datasets (e.g., single-face imagery), limiting their utility for real-world detection. To address these gaps, we present OpenFake, a large politically grounded dataset specifically crafted for benchmarking against modern generative models with high realism, and designed to remain extensible through an innovative crowdsourced adversarial platform that continually integrates new hard examples. OpenFake comprises nearly four million total images: three million real images paired with descriptive captions and almost one million synthetic counterparts from state-of-the-art proprietary and open-source models. Detectors trained on OpenFake achieve near-perfect in-distribution performance, strong generalization to unseen generators, and high accuracy on a curated in-the-wild social media test set, significantly outperforming models trained on existing datasets. Overall, we demonstrate that with high-quality and continually updated benchmarks, automatic deepfake detection is both feasible and effective in real-world settings.
OpenFake: An Open Dataset and Platform Toward Real-World Deepfake Detection
Deepfakes, synthetic media created using advanced AI techniques, pose a growing threat to information integrity, particularly in politically… (see more) sensitive contexts. This challenge is amplified by the increasing realism of modern generative models, which our human perception study confirms are often indistinguishable from real images. Yet, existing deepfake detection benchmarks rely on outdated generators or narrowly scoped datasets (e.g., single-face imagery), limiting their utility for real-world detection. To address these gaps, we present OpenFake, a large politically grounded dataset specifically crafted for benchmarking against modern generative models with high realism, and designed to remain extensible through an innovative crowdsourced adversarial platform that continually integrates new hard examples. OpenFake comprises nearly four million total images: three million real images paired with descriptive captions and almost one million synthetic counterparts from state-of-the-art proprietary and open-source models. Detectors trained on OpenFake achieve near-perfect in-distribution performance, strong generalization to unseen generators, and high accuracy on a curated in-the-wild social media test set, significantly outperforming models trained on existing datasets. Overall, we demonstrate that with high-quality and continually updated benchmarks, automatic deepfake detection is both feasible and effective in real-world settings.
RL Fine-Tuning Heals OOD Forgetting in SFT
Hangzhan Jin
Sicheng Lyu
Mohammad Hamdaqa
The two-stage fine-tuning paradigm of Supervised Fine-Tuning (SFT) followed by Reinforcement Learning (RL) has empirically shown better reas… (see more)oning performance than one-stage SFT for the post-training of Large Language Models (LLMs). However, the evolution and mechanism behind the synergy of SFT and RL are still under-explored and inconclusive. In our study, we find the well-known claim"SFT memorizes, RL generalizes"is over-simplified, and discover that: (1) OOD performance peaks at the early stage of SFT and then declines (OOD forgetting), the best SFT checkpoint cannot be captured by training/test loss; (2) the subsequent RL stage does not generate fundamentally better OOD capability, instead it plays an \textbf{OOD restoration} role, recovering the lost reasoning ability during SFT; (3) The recovery ability has boundaries, \ie{} \textbf{if SFT trains for too short or too long, RL cannot recover the lost OOD ability;} (4) To uncover the underlying mechanisms behind the forgetting and restoration process, we employ SVD analysis on parameter matrices, manually edit them, and observe their impacts on model performance. Unlike the common belief that the shift of model capacity mainly results from the changes of singular values, we find that they are actually quite stable throughout fine-tuning. Instead, the OOD behavior strongly correlates with the \textbf{rotation of singular vectors}. Our findings re-identify the roles of SFT and RL in the two-stage fine-tuning and discover the rotation of singular vectors as the key mechanism. %reversing the rotations induced by SFT, which shows recovery from forgetting, whereas imposing the SFT parameter directions onto a RL-tuned model results in performance degradation. Code is available at https://github.com/xiaodanguoguo/RL_Heals_SFT
RL Fine-Tuning Heals OOD Forgetting in SFT
Hangzhan Jin
Sicheng Lyu
Mohammad Hamdaqa
The two-stage fine-tuning paradigm of Supervised Fine-Tuning (SFT) followed by Reinforcement Learning (RL) has empirically shown better reas… (see more)oning performance than one-stage SFT for the post-training of Large Language Models (LLMs). However, the evolution and mechanism behind the synergy of SFT and RL are still under-explored and inconclusive. In our study, we find the well-known claim"SFT memorizes, RL generalizes"is over-simplified, and discover that: (1) OOD performance peaks at the early stage of SFT and then declines (OOD forgetting), the best SFT checkpoint cannot be captured by training/test loss; (2) the subsequent RL stage does not generate fundamentally better OOD capability, instead it plays an \textbf{OOD restoration} role, recovering the lost reasoning ability during SFT; (3) The recovery ability has boundaries, \ie{} \textbf{if SFT trains for too short or too long, RL cannot recover the lost OOD ability;} (4) To uncover the underlying mechanisms behind the forgetting and restoration process, we employ SVD analysis on parameter matrices, manually edit them, and observe their impacts on model performance. Unlike the common belief that the shift of model capacity mainly results from the changes of singular values, we find that they are actually quite stable throughout fine-tuning. Instead, the OOD behavior strongly correlates with the \textbf{rotation of singular vectors}. Our findings re-identify the roles of SFT and RL in the two-stage fine-tuning and discover the rotation of singular vectors as the key mechanism. %reversing the rotations induced by SFT, which shows recovery from forgetting, whereas imposing the SFT parameter directions onto a RL-tuned model results in performance degradation. Code is available at https://github.com/xiaodanguoguo/RL_Heals_SFT
RL Fine-Tuning Heals OOD Forgetting in SFT
Hangzhan Jin
Sicheng Lyu
Mohammad Hamdaqa
RL Fine-Tuning Heals OOD Forgetting in SFT
Hangzhan Jin
Sicheng Lyu
Mohammad Hamdaqa
The two-stage fine-tuning paradigm of Supervised Fine-Tuning (SFT) followed by Reinforcement Learning (RL) has empirically shown better reas… (see more)oning performance than one-stage SFT for the post-training of Large Language Models (LLMs). However, the evolution and mechanism behind the synergy of SFT and RL are still under-explored and inconclusive. In our study, we find the well-known claim "SFT memorizes, RL generalizes" is over-simplified, and discover that: (1) OOD performance peaks at the early stage of SFT and then declines (OOD forgetting), the best SFT checkpoint cannot be captured by training/test loss; (2) the subsequent RL stage does not generate fundamentally better OOD capability, instead it plays an \textbf{OOD restoration} role, recovering the lost reasoning ability during SFT; (3) The recovery ability has boundaries, \ie{} \textbf{if SFT trains for too short or too long, RL cannot recover the lost OOD ability;} (4) To uncover the underlying mechanisms behind the forgetting and restoration process, we employ SVD analysis on parameter matrices, manually edit them, and observe their impacts on model performance. Unlike the common belief that the shift of model capacity mainly results from the changes of singular values, we find that they are actually quite stable throughout fine-tuning. Instead, the OOD behavior strongly correlates with the \textbf{rotation of singular vectors}. Our findings re-identify the roles of SFT and RL in the two-stage fine-tuning and discover the rotation of singular vectors as the key mechanism. %reversing the rotations induced by SFT, which shows recovery from forgetting, whereas imposing the SFT parameter directions onto a RL-tuned model results in performance degradation. Code is available at https://github.com/xiaodanguoguo/RL_Heals_SFT
OpenFake: An Open Dataset and Platform Toward Real-World Deepfake Detection
Deepfakes, synthetic media created using advanced AI techniques, pose a growing threat to information integrity, particularly in politically… (see more) sensitive contexts. This challenge is amplified by the increasing realism of modern generative models, which our human perception study confirms are often indistinguishable from real images. Yet, existing deepfake detection benchmarks rely on outdated generators or narrowly scoped datasets (e.g., single-face imagery), limiting their utility for real-world detection. To address these gaps, we present OpenFake, a large politically grounded dataset specifically crafted for benchmarking against modern generative models with high realism, and designed to remain extensible through an innovative crowdsourced adversarial platform that continually integrates new hard examples. OpenFake comprises nearly four million total images: three million real images paired with descriptive captions and almost one million synthetic counterparts from state-of-the-art proprietary and open-source models. Detectors trained on OpenFake achieve near-perfect in-distribution performance, strong generalization to unseen generators, and high accuracy on a curated in-the-wild social media test set, significantly outperforming models trained on existing datasets. Overall, we demonstrate that with high-quality and continually updated benchmarks, automatic deepfake detection is both feasible and effective in real-world settings.
SandboxSocial: A Sandbox for Social Media Using Multimodal AI Agents
Gayatri K
Busra Tugce Gurbuz
Austin Welch
Hao Yu
Ethan Kosak-Hine
Tom Gibbs
Dan Zhao
The online information ecosystem enables influence campaigns of unprecedented scale and impact. We urgently need empirically grounded approa… (see more)ches to counter the growing threat of malicious campaigns, now amplified by generative AI. But, developing defenses in real-world settings is impractical. Social system simulations with agents modelled using Large Language Models (LLMs) are a promising alternative approach and a growing area of research. However, existing simulators lack features needed to capture the complex information-sharing dynamics of platform-based social networks. To bridge this gap, we present SandboxSocial, a new simulator that includes several key innovations, mainly: (1) a virtual social media platform (modelled as Mastodon and mirrored in an actual Mastodon server) that enables a realistic setting in which agents interact; (2) an adapter that uses real-world user data to create more grounded agents and social media content; and (3) multi-modal capabilities that enable our agents to interact using both text and images---just as humans do on social media. We make the simulator more useful to researchers by providing measurement and analysis tools that track simulation dynamics and compute evaluation metrics to compare experimental results.
SandboxSocial: A Sandbox for Social Media Using Multimodal AI Agents
Gayatri Krishnakumar
Busra Tugce Gurbuz
Austin Welch
Hao Yu
Ethan Kosak-Hine
Tom Gibbs
Dan Zhao
Veracity: An Open-Source AI Fact-Checking System.
William Garneau
Manon Gruaz
Li Wei Wang
Sukanya Krishna
Luda Cohen
Veracity: An Open-Source AI Fact-Checking System
William Garneau
Manon Gruaz
Li Wei Wang
Sukanya Krishna
Luda Cohen
The proliferation of misinformation poses a significant threat to society, exacerbated by the capabilities of generative AI. This demo paper… (see more) introduces Veracity, an open-source AI system designed to empower individuals to combat misinformation through transparent and accessible fact-checking. Veracity leverages the synergy between Large Language Models (LLMs) and web retrieval agents to analyze user-submitted claims and provide grounded veracity assessments with intuitive explanations. Key features include multilingual support, numerical scoring of claim veracity, and an interactive interface inspired by familiar messaging applications. This paper will showcase Veracity's ability to not only detect misinformation but also explain its reasoning, fostering media literacy and promoting a more informed society.
A Guide to Misinformation Detection Data and Evaluation