Portrait de Reihaneh Rabbany

Reihaneh Rabbany

Membre académique principal
Chaire en IA Canada-CIFAR
Professeure adjointe, McGill University, École d'informatique
Sujets de recherche
Apprentissage de représentations
Apprentissage sur graphes
Exploration des données
Réseaux de neurones en graphes
Traitement du langage naturel

Biographie

Reihaneh Rabbany est professeure adjointe à l'École d'informatique de l'Université McGill. Elle est membre du corps professoral de Mila – Institut québécois d’intelligence artificielle et titulaire d'une chaire en IA Canada-CIFAR. Elle est également membre du corps enseignant du Centre pour l’étude de la citoyenneté démocratique de McGill. Avant de se joindre à l’Université McGill, elle a été boursière postdoctorale à la School of Computer Science de l'Université Carnegie Mellon. Elle a obtenu un doctorat à l’Université de l’Alberta, au Département d'informatique. Elle dirige le laboratoire de données complexes, dont les recherches se situent à l'intersection de la science des réseaux, de l'exploration des données et de l'apprentissage automatique, et se concentrent sur l'analyse des données interconnectées du monde réel et sur les applications sociales.

Étudiants actuels

Collaborateur·rice de recherche - Concordia
Maîtrise recherche - McGill
Maîtrise recherche - McGill
Superviseur⋅e principal⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Collaborateur·rice alumni - McGill
Co-superviseur⋅e :
Stagiaire de recherche - McGill
Postdoctorat - McGill
Superviseur⋅e principal⋅e :
Maîtrise recherche - McGill
Co-superviseur⋅e :
Collaborateur·rice de recherche - McGill
Maîtrise recherche - McGill
Collaborateur·rice de recherche - McGill
Co-superviseur⋅e :
Collaborateur·rice alumni - McGill
Collaborateur·rice de recherche - McGill University
Collaborateur·rice de recherche - McGill
Maîtrise recherche - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - McGill
Collaborateur·rice de recherche - UdeM
Superviseur⋅e principal⋅e :
Doctorat - McGill
Stagiaire de recherche - McGill
Maîtrise recherche - UdeM
Superviseur⋅e principal⋅e :

Publications

OpenFake: An Open Dataset and Platform Toward Real-World Deepfake Detection
Deepfakes, synthetic media created using advanced AI techniques, pose a growing threat to information integrity, particularly in politically… (voir plus) sensitive contexts. This challenge is amplified by the increasing realism of modern generative models, which our human perception study confirms are often indistinguishable from real images. Yet, existing deepfake detection benchmarks rely on outdated generators or narrowly scoped datasets (e.g., single-face imagery), limiting their utility for real-world detection. To address these gaps, we present OpenFake, a large politically grounded dataset specifically crafted for benchmarking against modern generative models with high realism, and designed to remain extensible through an innovative crowdsourced adversarial platform that continually integrates new hard examples. OpenFake comprises nearly four million total images: three million real images paired with descriptive captions and almost one million synthetic counterparts from state-of-the-art proprietary and open-source models. Detectors trained on OpenFake achieve near-perfect in-distribution performance, strong generalization to unseen generators, and high accuracy on a curated in-the-wild social media test set, significantly outperforming models trained on existing datasets. Overall, we demonstrate that with high-quality and continually updated benchmarks, automatic deepfake detection is both feasible and effective in real-world settings.
OpenFake: An Open Dataset and Platform Toward Real-World Deepfake Detection
Deepfakes, synthetic media created using advanced AI techniques, pose a growing threat to information integrity, particularly in politically… (voir plus) sensitive contexts. This challenge is amplified by the increasing realism of modern generative models, which our human perception study confirms are often indistinguishable from real images. Yet, existing deepfake detection benchmarks rely on outdated generators or narrowly scoped datasets (e.g., single-face imagery), limiting their utility for real-world detection. To address these gaps, we present OpenFake, a large politically grounded dataset specifically crafted for benchmarking against modern generative models with high realism, and designed to remain extensible through an innovative crowdsourced adversarial platform that continually integrates new hard examples. OpenFake comprises nearly four million total images: three million real images paired with descriptive captions and almost one million synthetic counterparts from state-of-the-art proprietary and open-source models. Detectors trained on OpenFake achieve near-perfect in-distribution performance, strong generalization to unseen generators, and high accuracy on a curated in-the-wild social media test set, significantly outperforming models trained on existing datasets. Overall, we demonstrate that with high-quality and continually updated benchmarks, automatic deepfake detection is both feasible and effective in real-world settings.
RL Fine-Tuning Heals OOD Forgetting in SFT
Hangzhan Jin
Sicheng Lyu
Mohammad Hamdaqa
The two-stage fine-tuning paradigm of Supervised Fine-Tuning (SFT) followed by Reinforcement Learning (RL) has empirically shown better reas… (voir plus)oning performance than one-stage SFT for the post-training of Large Language Models (LLMs). However, the evolution and mechanism behind the synergy of SFT and RL are still under-explored and inconclusive. In our study, we find the well-known claim"SFT memorizes, RL generalizes"is over-simplified, and discover that: (1) OOD performance peaks at the early stage of SFT and then declines (OOD forgetting), the best SFT checkpoint cannot be captured by training/test loss; (2) the subsequent RL stage does not generate fundamentally better OOD capability, instead it plays an \textbf{OOD restoration} role, recovering the lost reasoning ability during SFT; (3) The recovery ability has boundaries, \ie{} \textbf{if SFT trains for too short or too long, RL cannot recover the lost OOD ability;} (4) To uncover the underlying mechanisms behind the forgetting and restoration process, we employ SVD analysis on parameter matrices, manually edit them, and observe their impacts on model performance. Unlike the common belief that the shift of model capacity mainly results from the changes of singular values, we find that they are actually quite stable throughout fine-tuning. Instead, the OOD behavior strongly correlates with the \textbf{rotation of singular vectors}. Our findings re-identify the roles of SFT and RL in the two-stage fine-tuning and discover the rotation of singular vectors as the key mechanism. %reversing the rotations induced by SFT, which shows recovery from forgetting, whereas imposing the SFT parameter directions onto a RL-tuned model results in performance degradation. Code is available at https://github.com/xiaodanguoguo/RL_Heals_SFT
RL Fine-Tuning Heals OOD Forgetting in SFT
Hangzhan Jin
Sicheng Lyu
Mohammad Hamdaqa
The two-stage fine-tuning paradigm of Supervised Fine-Tuning (SFT) followed by Reinforcement Learning (RL) has empirically shown better reas… (voir plus)oning performance than one-stage SFT for the post-training of Large Language Models (LLMs). However, the evolution and mechanism behind the synergy of SFT and RL are still under-explored and inconclusive. In our study, we find the well-known claim"SFT memorizes, RL generalizes"is over-simplified, and discover that: (1) OOD performance peaks at the early stage of SFT and then declines (OOD forgetting), the best SFT checkpoint cannot be captured by training/test loss; (2) the subsequent RL stage does not generate fundamentally better OOD capability, instead it plays an \textbf{OOD restoration} role, recovering the lost reasoning ability during SFT; (3) The recovery ability has boundaries, \ie{} \textbf{if SFT trains for too short or too long, RL cannot recover the lost OOD ability;} (4) To uncover the underlying mechanisms behind the forgetting and restoration process, we employ SVD analysis on parameter matrices, manually edit them, and observe their impacts on model performance. Unlike the common belief that the shift of model capacity mainly results from the changes of singular values, we find that they are actually quite stable throughout fine-tuning. Instead, the OOD behavior strongly correlates with the \textbf{rotation of singular vectors}. Our findings re-identify the roles of SFT and RL in the two-stage fine-tuning and discover the rotation of singular vectors as the key mechanism. %reversing the rotations induced by SFT, which shows recovery from forgetting, whereas imposing the SFT parameter directions onto a RL-tuned model results in performance degradation. Code is available at https://github.com/xiaodanguoguo/RL_Heals_SFT
RL Fine-Tuning Heals OOD Forgetting in SFT
Hangzhan Jin
Sicheng Lyu
Mohammad Hamdaqa
The two-stage fine-tuning paradigm of Supervised Fine-Tuning (SFT) followed by Reinforcement Learning (RL) has empirically shown better reas… (voir plus)oning performance than one-stage SFT for the post-training of Large Language Models (LLMs). However, the evolution and mechanism behind the synergy of SFT and RL are still under-explored and inconclusive. In our study, we find the well-known claim "SFT memorizes, RL generalizes" is over-simplified, and discover that: (1) OOD performance peaks at the early stage of SFT and then declines (OOD forgetting), the best SFT checkpoint cannot be captured by training/test loss; (2) the subsequent RL stage does not generate fundamentally better OOD capability, instead it plays an \textbf{OOD restoration} role, recovering the lost reasoning ability during SFT; (3) The recovery ability has boundaries, \ie{} \textbf{if SFT trains for too short or too long, RL cannot recover the lost OOD ability;} (4) To uncover the underlying mechanisms behind the forgetting and restoration process, we employ SVD analysis on parameter matrices, manually edit them, and observe their impacts on model performance. Unlike the common belief that the shift of model capacity mainly results from the changes of singular values, we find that they are actually quite stable throughout fine-tuning. Instead, the OOD behavior strongly correlates with the \textbf{rotation of singular vectors}. Our findings re-identify the roles of SFT and RL in the two-stage fine-tuning and discover the rotation of singular vectors as the key mechanism. %reversing the rotations induced by SFT, which shows recovery from forgetting, whereas imposing the SFT parameter directions onto a RL-tuned model results in performance degradation. Code is available at https://github.com/xiaodanguoguo/RL_Heals_SFT
RL Fine-Tuning Heals OOD Forgetting in SFT
Hangzhan Jin
Sicheng Lyu
Mohammad Hamdaqa
OpenFake: An Open Dataset and Platform Toward Real-World Deepfake Detection
Deepfakes, synthetic media created using advanced AI techniques, pose a growing threat to information integrity, particularly in politically… (voir plus) sensitive contexts. This challenge is amplified by the increasing realism of modern generative models, which our human perception study confirms are often indistinguishable from real images. Yet, existing deepfake detection benchmarks rely on outdated generators or narrowly scoped datasets (e.g., single-face imagery), limiting their utility for real-world detection. To address these gaps, we present OpenFake, a large politically grounded dataset specifically crafted for benchmarking against modern generative models with high realism, and designed to remain extensible through an innovative crowdsourced adversarial platform that continually integrates new hard examples. OpenFake comprises nearly four million total images: three million real images paired with descriptive captions and almost one million synthetic counterparts from state-of-the-art proprietary and open-source models. Detectors trained on OpenFake achieve near-perfect in-distribution performance, strong generalization to unseen generators, and high accuracy on a curated in-the-wild social media test set, significantly outperforming models trained on existing datasets. Overall, we demonstrate that with high-quality and continually updated benchmarks, automatic deepfake detection is both feasible and effective in real-world settings.
SandboxSocial: A Sandbox for Social Media Using Multimodal AI Agents
Gayatri K
Busra Tugce Gurbuz
Austin Welch
Hao Yu
Ethan Kosak-Hine
Tom Gibbs
Dan Zhao
The online information ecosystem enables influence campaigns of unprecedented scale and impact. We urgently need empirically grounded approa… (voir plus)ches to counter the growing threat of malicious campaigns, now amplified by generative AI. But, developing defenses in real-world settings is impractical. Social system simulations with agents modelled using Large Language Models (LLMs) are a promising alternative approach and a growing area of research. However, existing simulators lack features needed to capture the complex information-sharing dynamics of platform-based social networks. To bridge this gap, we present SandboxSocial, a new simulator that includes several key innovations, mainly: (1) a virtual social media platform (modelled as Mastodon and mirrored in an actual Mastodon server) that enables a realistic setting in which agents interact; (2) an adapter that uses real-world user data to create more grounded agents and social media content; and (3) multi-modal capabilities that enable our agents to interact using both text and images---just as humans do on social media. We make the simulator more useful to researchers by providing measurement and analysis tools that track simulation dynamics and compute evaluation metrics to compare experimental results.
SandboxSocial: A Sandbox for Social Media Using Multimodal AI Agents
Gayatri Krishnakumar
Busra Tugce Gurbuz
Austin Welch
Hao Yu
Ethan Kosak-Hine
Tom Gibbs
Dan Zhao
Veracity: An Open-Source AI Fact-Checking System
William Garneau
Manon Gruaz
Li Wei Wang
Sukanya Krishna
Luda Cohen
The proliferation of misinformation poses a significant threat to society, exacerbated by the capabilities of generative AI. This demo paper… (voir plus) introduces Veracity, an open-source AI system designed to empower individuals to combat misinformation through transparent and accessible fact-checking. Veracity leverages the synergy between Large Language Models (LLMs) and web retrieval agents to analyze user-submitted claims and provide grounded veracity assessments with intuitive explanations. Key features include multilingual support, numerical scoring of claim veracity, and an interactive interface inspired by familiar messaging applications. This paper will showcase Veracity's ability to not only detect misinformation but also explain its reasoning, fostering media literacy and promoting a more informed society.
Veracity: An Open-Source AI Fact-Checking System.
William Garneau
Manon Gruaz
Li Wei Wang
Sukanya Krishna
Luda Cohen
A Guide to Misinformation Detection Data and Evaluation