Portrait de Reihaneh Rabbany

Reihaneh Rabbany

Membre académique principal
Chaire en IA Canada-CIFAR
Professeure adjointe, McGill University, École d'informatique
Sujets de recherche
Apprentissage de représentations
Apprentissage sur graphes
Exploration des données
Réseaux de neurones en graphes
Traitement du langage naturel

Biographie

Reihaneh Rabbany est professeure adjointe à l'École d'informatique de l'Université McGill. Elle est membre du corps professoral de Mila – Institut québécois d’intelligence artificielle et titulaire d'une chaire en IA Canada-CIFAR. Elle est également membre du corps enseignant du Centre pour l’étude de la citoyenneté démocratique de McGill. Avant de se joindre à l’Université McGill, elle a été boursière postdoctorale à la School of Computer Science de l'Université Carnegie Mellon. Elle a obtenu un doctorat à l’Université de l’Alberta, au Département d'informatique. Elle dirige le laboratoire de données complexes, dont les recherches se situent à l'intersection de la science des réseaux, de l'exploration des données et de l'apprentissage automatique, et se concentrent sur l'analyse des données interconnectées du monde réel et sur les applications sociales.

Étudiants actuels

Maîtrise recherche - McGill
Superviseur⋅e principal⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Collaborateur·rice alumni - McGill
Co-superviseur⋅e :
Stagiaire de recherche - McGill
Maîtrise recherche - McGill
Maîtrise recherche - McGill
Co-superviseur⋅e :
Maîtrise recherche - McGill
Maîtrise recherche - McGill
Co-superviseur⋅e :
Collaborateur·rice de recherche
Collaborateur·rice de recherche - McGill University
Collaborateur·rice de recherche - McGill
Stagiaire de recherche - McGill
Maîtrise recherche - McGill
Maîtrise recherche - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - UdeM
Superviseur⋅e principal⋅e :
Doctorat - McGill
Stagiaire de recherche - McGill
Maîtrise recherche - UdeM
Superviseur⋅e principal⋅e :

Publications

UTG: Towards a Unified View of Snapshot and Event Based Models for Temporal Graphs
Shenyang Huang
Farimah Poursafaei
Emanuele Rossi
Many real world graphs are inherently dynamic, constantly evolving with node and edge additions. These graphs can be represented by temporal… (voir plus) graphs, either through a stream of edge events or a sequence of graph snapshots. Until now, the development of machine learning methods for both types has occurred largely in isolation, resulting in limited experimental comparison and theoretical crosspollination between the two. In this paper, we introduce Unified Temporal Graph (UTG), a framework that unifies snapshot-based and event-based machine learning models under a single umbrella, enabling models developed for one representation to be applied effectively to datasets of the other. We also propose a novel UTG training procedure to boost the performance of snapshot-based models in the streaming setting. We comprehensively evaluate both snapshot and event-based models across both types of temporal graphs on the temporal link prediction task. Our main findings are threefold: first, when combined with UTG training, snapshot-based models can perform competitively with event-based models such as TGN and GraphMixer even on event datasets. Second, snapshot-based models are at least an order of magnitude faster than most event-based models during inference. Third, while event-based methods such as NAT and DyGFormer outperforms snapshot-based methods on both types of temporal graphs, this is because they leverage joint neighborhood structural features thus emphasizing the potential to incorporate these features into snapshotbased models as well. These findings highlight the importance of comparing model architectures independent of the data format and suggest the potential of combining the efficiency of snapshot-based models with the performance of event-based models in the future.
Web Retrieval Agents for Evidence-Based Misinformation Detection
Jacob-Junqi Tian
Hao Yu
Yury Orlovskiy
Tyler Vergho
Mauricio Rivera
Mayank Goel
Zachary Yang
Kellin Pelrine
Regional and Temporal Patterns of Partisan Polarization during the COVID-19 Pandemic in the United States and Canada
Zachary Yang
Anne Imouza
Maximilian Puelma Touzel
C'ecile Amadoro
Gabrielle Desrosiers-Brisebois
Kellin Pelrine
Sacha Lévy
Public health measures were among the most polarizing topics debated online during the COVID-19 pandemic. Much of the discussion surrounded … (voir plus)specific events, such as when and which particular interventions came into practise. In this work, we develop and apply an approach to measure subnational and event-driven variation of partisan polarization and explore how these dynamics varied both across and within countries. We apply our measure to a dataset of over 50 million tweets posted during late 2020, a salient period of polarizing discourse in the early phase of the pandemic. In particular, we examine regional variations in both the United States and Canada, focusing on three specific health interventions: lockdowns, masks, and vaccines. We find that more politically conservative regions had higher levels of partisan polarization in both countries, especially in the US where a strong negative correlation exists between regional vaccination rates and degree of polarization in vaccine related discussions. We then analyze the timing, context, and profile of spikes in polarization, linking them to specific events discussed on social media across different regions in both countries. These typically last only a few days in duration, suggesting that online discussions reflect and could even drive changes in public opinion, which in the context of pandemic response impacts public health outcomes across different regions and over time.
Regional and Temporal Patterns of Partisan Polarization during the COVID-19 Pandemic in the United States and Canada
Zachary Yang
Anne Imouza
Maximilian Puelma Touzel
C'ecile Amadoro
Gabrielle Desrosiers-Brisebois
Kellin Pelrine
Sacha Lévy
Public health measures were among the most polarizing topics debated online during the COVID-19 pandemic. Much of the discussion surrounded … (voir plus)specific events, such as when and which particular interventions came into practise. In this work, we develop and apply an approach to measure subnational and event-driven variation of partisan polarization and explore how these dynamics varied both across and within countries. We apply our measure to a dataset of over 50 million tweets posted during late 2020, a salient period of polarizing discourse in the early phase of the pandemic. In particular, we examine regional variations in both the United States and Canada, focusing on three specific health interventions: lockdowns, masks, and vaccines. We find that more politically conservative regions had higher levels of partisan polarization in both countries, especially in the US where a strong negative correlation exists between regional vaccination rates and degree of polarization in vaccine related discussions. We then analyze the timing, context, and profile of spikes in polarization, linking them to specific events discussed on social media across different regions in both countries. These typically last only a few days in duration, suggesting that online discussions reflect and could even drive changes in public opinion, which in the context of pandemic response impacts public health outcomes across different regions and over time.
Game On, Hate Off: A Study of Toxicity in Online Multiplayer Environments
Zachary Yang
Nicolas Grenon-Godbout
MiNT: Multi-Network Training for Transfer Learning on Temporal Graphs
Kiarash Shamsi
Tran Gia Bao Ngo
Razieh Shirzadkhani
Shenyang Huang
Farimah Poursafaei
Poupak Azad
Baris Coskunuzer
Cuneyt Gurcan Akcora
MiNT: Multi-Network Training for Transfer Learning on Temporal Graphs
Kiarash Shamsi
Tran Gia Bao Ngo
Razieh Shirzadkhani
Shenyang Huang
Farimah Poursafaei
Poupak Azad
Baris Coskunuzer
Cuneyt Gurcan Akcora
TGB 2.0: A Benchmark for Learning on Temporal Knowledge Graphs and Heterogeneous Graphs
Julia Gastinger
Shenyang Huang
Mikhail Galkin
Erfan Loghmani
Ali Parviz
Farimah Poursafaei
Jacob Danovitch
Emanuele Rossi
Ioannis Koutis
Heiner Stuckenschmidt
Multi-relational temporal graphs are powerful tools for modeling real-world data, capturing the evolving and interconnected nature of entiti… (voir plus)es over time. Recently, many novel models are proposed for ML on such graphs intensifying the need for robust evaluation and standardized benchmark datasets. However, the availability of such resources remains scarce and evaluation faces added complexity due to reproducibility issues in experimental protocols. To address these challenges, we introduce Temporal Graph Benchmark 2.0 (TGB 2.0), a novel benchmarking framework tailored for evaluating methods for predicting future links on Temporal Knowledge Graphs and Temporal Heterogeneous Graphs with a focus on large-scale datasets, extending the Temporal Graph Benchmark. TGB 2.0 facilitates comprehensive evaluations by presenting eight novel datasets spanning five domains with up to 53 million edges. TGB 2.0 datasets are significantly larger than existing datasets in terms of number of nodes, edges, or timestamps. In addition, TGB 2.0 provides a reproducible and realistic evaluation pipeline for multi-relational temporal graphs. Through extensive experimentation, we observe that 1) leveraging edge-type information is crucial to obtain high performance, 2) simple heuristic baselines are often competitive with more complex methods, 3) most methods fail to run on our largest datasets, highlighting the need for research on more scalable methods.
Towards Neural Scaling Laws for Foundation Models on Temporal Graphs
Razieh Shirzadkhani
Tran Gia Bao Ngo
Kiarash Shamsi
Shenyang Huang
Farimah Poursafaei
Poupak Azad
Baris Coskunuzer
Cuneyt Gurcan Akcora
The field of temporal graph learning aims to learn from evolving network data to forecast future interactions. Given a collection of observe… (voir plus)d temporal graphs, is it possible to predict the evolution of an unseen network from the same domain? To answer this question, we first present the Temporal Graph Scaling (TGS) dataset, a large collection of temporal graphs consisting of eighty-four ERC20 token transaction networks collected from 2017 to 2023. Next, we evaluate the transferability of Temporal Graph Neural Networks (TGNNs) for the temporal graph property prediction task by pre-training on a collection of up to sixty-four token transaction networks and then evaluating the downstream performance on twenty unseen token networks. We find that the neural scaling law observed in NLP and Computer Vision also applies in temporal graph learning, where pre-training on greater number of networks leads to improved downstream performance. To the best of our knowledge, this is the first empirical demonstration of the transferability of temporal graphs learning. On downstream token networks, the largest pre-trained model outperforms single model TGNNs on thirteen unseen test networks. Therefore, we believe that this is a promising first step towards building foundation models for temporal graphs.
Static graph approximations of dynamic contact networks for epidemic forecasting
Razieh Shirzadkhani
Shenyang Huang
Abby Leung
T-NET: Weakly Supervised Graph Learning for Combatting Human Trafficking
Pratheeksha Nair
Javin Liu
Catalina Vajiac
Andreas Olligschlaeger
Duen Horng Chau
Mirela T. Cazzolato
Cara Jones
Christos Faloutsos
Human trafficking (HT) for forced sexual exploitation, often described as modern-day slavery, is a pervasive problem that affects millions o… (voir plus)f people worldwide. Perpetrators of this crime post advertisements (ads) on behalf of their victims on adult service websites (ASW). These websites typically contain hundreds of thousands of ads including those posted by independent escorts, massage parlor agencies and spammers (fake ads). Detecting suspicious activity in these ads is difficult and developing data-driven methods is challenging due to the hard-to-label, complex and sensitive nature of the data. In this paper, we propose T-Net, which unlike previous solutions, formulates this problem as weakly supervised classification. Since it takes several months to years to investigate a case and obtain a single definitive label, we design domain-specific signals or indicators that provide weak labels. T-Net also looks into connections between ads and models the problem as a graph learning task instead of classifying ads independently. We show that T-Net outperforms all baselines on a real-world dataset of ads by 7% average weighted F1 score. Given that this data contains personally identifiable information, we also present a realistic data generator and provide the first publicly available dataset in this domain which may be leveraged by the wider research community.
T-NET: Weakly Supervised Graph Learning for Combatting Human Trafficking
Pratheeksha Nair
Javin Liu
Catalina Vajiac
Andreas Olligschlaeger
Duen Horng Chau
Mirela T. Cazzolato
Cara Jones
Christos Faloutsos
Human trafficking (HT) for forced sexual exploitation, often described as modern-day slavery, is a pervasive problem that affects millions o… (voir plus)f people worldwide. Perpetrators of this crime post advertisements (ads) on behalf of their victims on adult service websites (ASW). These websites typically contain hundreds of thousands of ads including those posted by independent escorts, massage parlor agencies and spammers (fake ads). Detecting suspicious activity in these ads is difficult and developing data-driven methods is challenging due to the hard-to-label, complex and sensitive nature of the data. In this paper, we propose T-Net, which unlike previous solutions, formulates this problem as weakly supervised classification. Since it takes several months to years to investigate a case and obtain a single definitive label, we design domain-specific signals or indicators that provide weak labels. T-Net also looks into connections between ads and models the problem as a graph learning task instead of classifying ads independently. We show that T-Net outperforms all baselines on a real-world dataset of ads by 7% average weighted F1 score. Given that this data contains personally identifiable information, we also present a realistic data generator and provide the first publicly available dataset in this domain which may be leveraged by the wider research community.