Mila organise son premier hackathon en informatique quantique le 21 novembre. Une journée unique pour explorer le prototypage quantique et l’IA, collaborer sur les plateformes de Quandela et IBM, et apprendre, échanger et réseauter dans un environnement stimulant au cœur de l’écosystème québécois en IA et en quantique.
Une nouvelle initiative pour renforcer les liens entre la communauté de recherche, les partenaires et les expert·e·s en IA à travers le Québec et le Canada, grâce à des rencontres et événements en présentiel axés sur l’adoption de l’IA dans l’industrie.
Perspectives sur l’IA pour les responsables des politiques
Co-dirigé par Mila et le CIFAR, ce programme met en relation les décideur·euse·s avec des chercheur·euse·s de pointe en IA grâce à une combinaison de consultations ouvertes et d'exercices de test de faisabilité des politiques. La prochaine session aura lieu les 9 et 10 octobre.
Hugo Larochelle nommé directeur scientifique de Mila
Professeur associé à l’Université de Montréal et ancien responsable du laboratoire de recherche en IA de Google à Montréal, Hugo Larochelle est un pionnier de l’apprentissage profond et fait partie des chercheur·euses les plus respecté·es au Canada.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
In this paper, we tackle the challenge of predicting stock movements in financial markets by introducing Higher Order Transformers, a novel … (voir plus)architecture designed for processing multivariate time-series data. We extend the self-attention mechanism and the transformer architecture to a higher order, effectively capturing complex market dynamics across time and variables. To manage computational complexity, we propose a low-rank approximation of the potentially large attention tensor using tensor decomposition and employ kernel attention, reducing complexity to linear with respect to the data size. Additionally, we present an encoder-decoder model that integrates technical and fundamental analysis, utilizing multimodal signals from historical prices and related tweets. Our experiments on the Stocknet dataset demonstrate the effectiveness of our method, highlighting its potential for enhancing stock movement prediction in financial markets.
In this paper, we tackle the challenge of predicting stock movements in financial markets by introducing Higher Order Transformers, a novel … (voir plus)architecture designed for processing multivariate time-series data. We extend the self-attention mechanism and the transformer architecture to a higher order, effectively capturing complex market dynamics across time and variables. To manage computational complexity, we propose a low-rank approximation of the potentially large attention tensor using tensor decomposition and employ kernel attention, reducing complexity to linear with respect to the data size. Additionally, we present an encoder-decoder model that integrates technical and fundamental analysis, utilizing multimodal signals from historical prices and related tweets. Our experiments on the Stocknet dataset demonstrate the effectiveness of our method, highlighting its potential for enhancing stock movement prediction in financial markets.
In this paper, we tackle the challenge of predicting stock movements in financial markets by introducing Higher Order Transformers, a novel … (voir plus)architecture designed for processing multivariate time-series data. We extend the self-attention mechanism and the transformer architecture to a higher order, effectively capturing complex market dynamics across time and variables. To manage computational complexity, we propose a low-rank approximation of the potentially large attention tensor using tensor decomposition and employ kernel attention, reducing complexity to linear with respect to the data size. Additionally, we present an encoder-decoder model that integrates technical and fundamental analysis, utilizing multimodal signals from historical prices and related tweets. Our experiments on the Stocknet dataset demonstrate the effectiveness of our method, highlighting its potential for enhancing stock movement prediction in financial markets.
Transformers are now ubiquitous for sequence modeling tasks, but their extension to multi-dimensional data remains a challenge due to the qu… (voir plus)adratic cost of the attention mechanism. In this paper, we propose Higher-Order Transformers (HOT), a novel architecture designed to efficiently process data with more than two axes, i.e. higher-order tensors. To address the computational challenges associated with high-order tensor attention, we introduce a novel Kronecker factorized attention mechanism that reduces the attention cost to quadratic in each axis' dimension, rather than quadratic in the total size of the input tensor. To further enhance efficiency, HOT leverages kernelized attention, reducing the complexity to linear. This strategy maintains the model's expressiveness while enabling scalable attention computation. We validate the effectiveness of HOT on two high-dimensional tasks, including multivariate time series forecasting, and 3D medical image classification. Experimental results demonstrate that HOT achieves competitive performance while significantly improving computational efficiency, showcasing its potential for tackling a wide range of complex, multi-dimensional data.
Transformers are now ubiquitous for sequence modeling tasks, but their extension to multi-dimensional data remains a challenge due to the qu… (voir plus)adratic cost of the attention mechanism. In this paper, we propose Higher-Order Transformers (HOT), a novel architecture designed to efficiently process data with more than two axes, i.e. higher-order tensors. To address the computational challenges associated with high-order tensor attention, we introduce a novel Kronecker factorized attention mechanism that reduces the attention cost to quadratic in each axis' dimension, rather than quadratic in the total size of the input tensor. To further enhance efficiency, HOT leverages kernelized attention, reducing the complexity to linear. This strategy maintains the model's expressiveness while enabling scalable attention computation. We validate the effectiveness of HOT on two high-dimensional tasks, including multivariate time series forecasting, and 3D medical image classification. Experimental results demonstrate that HOT achieves competitive performance while significantly improving computational efficiency, showcasing its potential for tackling a wide range of complex, multi-dimensional data.
Transformers are now ubiquitous for sequence modeling tasks, but their extension to multi-dimensional data remains a challenge due to the qu… (voir plus)adratic cost of the attention mechanism. In this paper, we propose Higher-Order Transformers (HOT), a novel architecture designed to efficiently process data with more than two axes, i.e. higher-order tensors. To address the computational challenges associated with high-order tensor attention, we introduce a novel Kronecker factorized attention mechanism that reduces the attention cost to quadratic in each axis' dimension, rather than quadratic in the total size of the input tensor. To further enhance efficiency, HOT leverages kernelized attention, reducing the complexity to linear. This strategy maintains the model's expressiveness while enabling scalable attention computation. We validate the effectiveness of HOT on two high-dimensional tasks, including multivariate time series forecasting, and 3D medical image classification. Experimental results demonstrate that HOT achieves competitive performance while significantly improving computational efficiency, showcasing its potential for tackling a wide range of complex, multi-dimensional data.