Portrait de Reihaneh Rabbany

Reihaneh Rabbany

Membre académique principal
Chaire en IA Canada-CIFAR
Professeure adjointe, McGill University, École d'informatique
Sujets de recherche
Apprentissage de représentations
Apprentissage sur graphes
Exploration des données
Réseaux de neurones en graphes
Traitement du langage naturel

Biographie

Reihaneh Rabbany est professeure adjointe à l'École d'informatique de l'Université McGill. Elle est membre du corps professoral de Mila – Institut québécois d’intelligence artificielle et titulaire d'une chaire en IA Canada-CIFAR. Elle est également membre du corps enseignant du Centre pour l’étude de la citoyenneté démocratique de McGill. Avant de se joindre à l’Université McGill, elle a été boursière postdoctorale à la School of Computer Science de l'Université Carnegie Mellon. Elle a obtenu un doctorat à l’Université de l’Alberta, au Département d'informatique. Elle dirige le laboratoire de données complexes, dont les recherches se situent à l'intersection de la science des réseaux, de l'exploration des données et de l'apprentissage automatique, et se concentrent sur l'analyse des données interconnectées du monde réel et sur les applications sociales.

Étudiants actuels

Collaborateur·rice de recherche - Concordia
Maîtrise recherche - McGill
Maîtrise recherche - McGill
Superviseur⋅e principal⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Collaborateur·rice alumni - McGill
Co-superviseur⋅e :
Stagiaire de recherche - McGill
Postdoctorat - McGill
Superviseur⋅e principal⋅e :
Maîtrise recherche - McGill
Co-superviseur⋅e :
Collaborateur·rice de recherche - McGill
Maîtrise recherche - McGill
Collaborateur·rice de recherche - McGill
Co-superviseur⋅e :
Collaborateur·rice alumni - McGill
Collaborateur·rice de recherche - McGill University
Collaborateur·rice de recherche - McGill
Maîtrise recherche - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - McGill
Collaborateur·rice de recherche - UdeM
Superviseur⋅e principal⋅e :
Doctorat - McGill
Stagiaire de recherche - McGill
Maîtrise recherche - UdeM
Superviseur⋅e principal⋅e :

Publications

PairBench: Are Vision-Language Models Reliable at Comparing What They See?
Sai Rajeswar
Valentina Zantedeschi
Joao Monteiro
Understanding how effectively large vision language models (VLMs) compare visual inputs is crucial across numerous applications, yet this fu… (voir plus)ndamental capability remains insufficiently assessed. While VLMs are increasingly deployed for tasks requiring comparative judgment, including automated evaluation, re-ranking, and retrieval-augmented generation, no systematic framework exists to measure their performance in these scenarios. We present PairBench, a simple framework that evaluates VLMs as customizable similarity tools using widely available image datasets. Our approach introduces four key metrics for reliable comparison: alignment with human annotations, consistency across pair ordering, distribution smoothness, and controllability through prompting. Our analysis reveals that no model consistently excels across all metrics, with each demonstrating distinct strengths and weaknesses. Most concerning is the widespread inability of VLMs to maintain symmetric similarity scores. Interestingly, we demonstrate that performance on our benchmark strongly correlates with popular benchmarks used for more complex tasks, while providing additional metrics into controllability, smoothness and ordering. This makes PairBench a unique and comprehensive framework to evaluate the performance of VLMs for automatic evaluation depending on the task.
PairBench: A Systematic Framework for Selecting Reliable Judge VLMs
Sai Rajeswar
Valentina Zantedeschi
Joao Monteiro
As large vision language models (VLMs) are increasingly used as automated evaluators, understanding their ability to effectively compare dat… (voir plus)a pairs as instructed in the prompt becomes essential. To address this, we present PairBench, a low-cost framework that systematically evaluates VLMs as customizable similarity tools across various modalities and scenarios. Through PairBench, we introduce four metrics that represent key desiderata of similarity scores: alignment with human annotations, consistency for data pairs irrespective of their order, smoothness of similarity distributions, and controllability through prompting. Our analysis demonstrates that no model, whether closed- or open-source, is superior on all metrics; the optimal choice depends on an auto evaluator's desired behavior (e.g., a smooth vs. a sharp judge), highlighting risks of widespread adoption of VLMs as evaluators without thorough assessment. For instance, the majority of VLMs struggle with maintaining symmetric similarity scores regardless of order. Additionally, our results show that the performance of VLMs on the metrics in PairBench closely correlates with popular benchmarks, showcasing its predictive power in ranking models.
Hallucination Detox: Sensitivity Dropout (SenD) for Large Language Model Training
OpenFake: An Open Dataset and Platform Toward Large-Scale Deepfake Detection
Deepfakes, synthetic media created using advanced AI techniques, have intensified the spread of misinformation, particularly in politically … (voir plus)sensitive contexts. Existing deepfake detection datasets are often limited, relying on outdated generation methods, low realism, or single-face imagery, restricting the effectiveness for general synthetic image detection. By analyzing social media posts, we identify multiple modalities through which deepfakes propagate misinformation. Furthermore, our human perception study demonstrates that recently developed proprietary models produce synthetic images increasingly indistinguishable from real ones, complicating accurate identification by the general public. Consequently, we present a comprehensive, politically-focused dataset specifically crafted for benchmarking detection against modern generative models. This dataset contains three million real images paired with descriptive captions, which are used for generating 963k corresponding high-quality synthetic images from a mix of proprietary and open-source models. Recognizing the continual evolution of generative techniques, we introduce an innovative crowdsourced adversarial platform, where participants are incentivized to generate and submit challenging synthetic images. This ongoing community-driven initiative ensures that deepfake detection methods remain robust and adaptive, proactively safeguarding public discourse from sophisticated misinformation threats.
PairBench: A Systematic Framework for Selecting Reliable Judge VLMs
Sai Rajeswar
Valentina Zantedeschi
Joao Monteiro
As large vision language models (VLMs) are increasingly used as automated evaluators, understanding their ability to effectively compare dat… (voir plus)a pairs as instructed in the prompt becomes essential. To address this, we present PairBench, a low-cost framework that systematically evaluates VLMs as customizable similarity tools across various modalities and scenarios. Through PairBench, we introduce four metrics that represent key desiderata of similarity scores: alignment with human annotations, consistency for data pairs irrespective of their order, smoothness of similarity distributions, and controllability through prompting. Our analysis demonstrates that no model, whether closed- or open-source, is superior on all metrics; the optimal choice depends on an auto evaluator's desired behavior (e.g., a smooth vs. a sharp judge), highlighting risks of widespread adoption of VLMs as evaluators without thorough assessment. For instance, the majority of VLMs struggle with maintaining symmetric similarity scores regardless of order. Additionally, our results show that the performance of VLMs on the metrics in PairBench closely correlates with popular benchmarks, showcasing its predictive power in ranking models.
The Singapore Consensus on Global AI Safety Research Priorities
Luke Ong
Stuart Russell
Dawn Song
Max Tegmark
Lan Xue
Ya-Qin Zhang
Stephen Casper
Wan Sie Lee
Vanessa Wilfred
Vidhisha Balachandran
Fazl Barez
Michael Belinsky
Imane Bello
Malo Bourgon
Mark Brakel
Sim'eon Campos
Duncan Cass-Beggs … (voir 67 de plus)
Jiahao Chen
Rumman Chowdhury
Kuan Chua Seah
Jeff Clune
Juntao Dai
Agnès Delaborde
Francisco Eiras
Joshua Engels
Jinyu Fan
Adam Gleave
Noah D. Goodman
Fynn Heide
Johannes Heidecke
Dan Hendrycks
Cyrus Hodes
Bryan Low Kian Hsiang
Minlie Huang
Sami Jawhar
Jingyu Wang
Adam Tauman Kalai
Meindert Kamphuis
Mohan S. Kankanhalli
Subhash Kantamneni
Mathias Bonde Kirk
Thomas Kwa
Jeffrey Ladish
Kwok-Yan Lam
Wan Lee Sie
Taewhi Lee
Xiaojian Li
Jiajun Liu
Chaochao Lu
Yifan Mai
Richard Mallah
Julian Michael
Nick Moës
Simon Möller
Kihyuk Nam
Kwan Yee Ng
Mark Nitzberg
Besmira Nushi
Sean O hEigeartaigh
Alejandro Ortega
Pierre Peigné
James Petrie
Nayat Sanchez-Pi
Sarah Schwettmann
Buck Shlegeris
Saad Siddiqui
Aradhana Sinha
Martín Soto
Cheston Tan
Dong Ting
William-Chandra Tjhi
Robert Trager
Brian Tse
H. AnthonyTungK.
John Willes
Denise Wong
W. Xu
Rongwu Xu
Yi Zeng
HongJiang Zhang
Djordje Zikelic
Rapidly improving AI capabilities and autonomy hold significant promise of transformation, but are also driving vigorous debate on how to en… (voir plus)sure that AI is safe, i.e., trustworthy, reliable, and secure. Building a trusted ecosystem is therefore essential -- it helps people embrace AI with confidence and gives maximal space for innovation while avoiding backlash. The "2025 Singapore Conference on AI (SCAI): International Scientific Exchange on AI Safety" aimed to support research in this space by bringing together AI scientists across geographies to identify and synthesise research priorities in AI safety. This resulting report builds on the International AI Safety Report chaired by Yoshua Bengio and backed by 33 governments. By adopting a defence-in-depth model, this report organises AI safety research domains into three types: challenges with creating trustworthy AI systems (Development), challenges with evaluating their risks (Assessment), and challenges with monitoring and intervening after deployment (Control).
The Singapore Consensus on Global AI Safety Research Priorities
Luke Ong
Stuart Russell
Dawn Song
Max Tegmark
Lan Xue
Ya-Qin Zhang
Stephen Casper
Wan Sie Lee
Vanessa Wilfred
Vidhisha Balachandran
Fazl Barez
Michael Belinsky
Imane Bello
Malo Bourgon
Mark Brakel
Sim'eon Campos
Duncan Cass-Beggs … (voir 67 de plus)
Jiahao Chen
Rumman Chowdhury
Kuan Chua Seah
Jeff Clune
Juntao Dai
Agnès Delaborde
Francisco Eiras
Joshua Engels
Jinyu Fan
Adam Gleave
Noah D. Goodman
Fynn Heide
Johannes Heidecke
Dan Hendrycks
Cyrus Hodes
Bryan Low Kian Hsiang
Minlie Huang
Sami Jawhar
Jingyu Wang
Adam Tauman Kalai
Meindert Kamphuis
Mohan S. Kankanhalli
Subhash Kantamneni
Mathias Bonde Kirk
Thomas Kwa
Jeffrey Ladish
Kwok-Yan Lam
Wan Lee Sie
Taewhi Lee
Xiaojian Li
Jiajun Liu
Chaochao Lu
Yifan Mai
Richard Mallah
Julian Michael
Nick Moës
Simon Möller
Kihyuk Nam
Kwan Yee Ng
Mark Nitzberg
Besmira Nushi
Sean O hEigeartaigh
Alejandro Ortega
Pierre Peigné
James Petrie
Nayat Sanchez-Pi
Sarah Schwettmann
Buck Shlegeris
Saad Siddiqui
Aradhana Sinha
Martín Soto
Cheston Tan
Dong Ting
William Tjhi
Robert Trager
Brian Tse
H. AnthonyTungK.
John Willes
Denise Wong
Wei Xu
Rongwu Xu
Yi Zeng 0005
HongJiang Zhang
Djordje Zikelic
Online Influence Campaigns: Strategies and Vulnerabilities
Ethan Kosak-Hine
Tom Gibbs
U. Montr'eal
Ivado
M. University
In order to combat the creation and spread of harmful content online, this paper defines and contextualizes the concept of inauthentic, soci… (voir plus)etal-scale manipulation by malicious actors. We review the literature on societally harmful content and how it proliferates to analyze the manipulation strategies used by such actors and the vulnerabilities they target. We also provide an overview of three case studies of extensive manipulation campaigns to emphasize the severity of the problem. We then address the role that Artificial Intelligence plays in the development and dissemination of harmful content, and how its evolution presents new threats to societal cohesion for countries across the globe. Our survey aims to increase our understanding of not just particular aspects of these threats, but also the strategies underlying their deployment, so we can effectively prepare for the evolving cybersecurity landscape.
Higher Order Transformers: Enhancing Stock Movement Prediction On Multimodal Time-Series Data
In this paper, we tackle the challenge of predicting stock movements in financial markets by introducing Higher Order Transformers, a novel … (voir plus)architecture designed for processing multivariate time-series data. We extend the self-attention mechanism and the transformer architecture to a higher order, effectively capturing complex market dynamics across time and variables. To manage computational complexity, we propose a low-rank approximation of the potentially large attention tensor using tensor decomposition and employ kernel attention, reducing complexity to linear with respect to the data size. Additionally, we present an encoder-decoder model that integrates technical and fundamental analysis, utilizing multimodal signals from historical prices and related tweets. Our experiments on the Stocknet dataset demonstrate the effectiveness of our method, highlighting its potential for enhancing stock movement prediction in financial markets.
Higher Order Transformers: Enhancing Stock Movement Prediction On Multimodal Time-Series Data
In this paper, we tackle the challenge of predicting stock movements in financial markets by introducing Higher Order Transformers, a novel … (voir plus)architecture designed for processing multivariate time-series data. We extend the self-attention mechanism and the transformer architecture to a higher order, effectively capturing complex market dynamics across time and variables. To manage computational complexity, we propose a low-rank approximation of the potentially large attention tensor using tensor decomposition and employ kernel attention, reducing complexity to linear with respect to the data size. Additionally, we present an encoder-decoder model that integrates technical and fundamental analysis, utilizing multimodal signals from historical prices and related tweets. Our experiments on the Stocknet dataset demonstrate the effectiveness of our method, highlighting its potential for enhancing stock movement prediction in financial markets.
Higher Order Transformers: Enhancing Stock Movement Prediction On Multimodal Time-Series Data
In this paper, we tackle the challenge of predicting stock movements in financial markets by introducing Higher Order Transformers, a novel … (voir plus)architecture designed for processing multivariate time-series data. We extend the self-attention mechanism and the transformer architecture to a higher order, effectively capturing complex market dynamics across time and variables. To manage computational complexity, we propose a low-rank approximation of the potentially large attention tensor using tensor decomposition and employ kernel attention, reducing complexity to linear with respect to the data size. Additionally, we present an encoder-decoder model that integrates technical and fundamental analysis, utilizing multimodal signals from historical prices and related tweets. Our experiments on the Stocknet dataset demonstrate the effectiveness of our method, highlighting its potential for enhancing stock movement prediction in financial markets.
Higher Order Transformers: Efficient Attention Mechanism for Tensor Structured Data
Transformers are now ubiquitous for sequence modeling tasks, but their extension to multi-dimensional data remains a challenge due to the qu… (voir plus)adratic cost of the attention mechanism. In this paper, we propose Higher-Order Transformers (HOT), a novel architecture designed to efficiently process data with more than two axes, i.e. higher-order tensors. To address the computational challenges associated with high-order tensor attention, we introduce a novel Kronecker factorized attention mechanism that reduces the attention cost to quadratic in each axis' dimension, rather than quadratic in the total size of the input tensor. To further enhance efficiency, HOT leverages kernelized attention, reducing the complexity to linear. This strategy maintains the model's expressiveness while enabling scalable attention computation. We validate the effectiveness of HOT on two high-dimensional tasks, including multivariate time series forecasting, and 3D medical image classification. Experimental results demonstrate that HOT achieves competitive performance while significantly improving computational efficiency, showcasing its potential for tackling a wide range of complex, multi-dimensional data.