Portrait de Reihaneh Rabbany

Reihaneh Rabbany

Membre académique principal
Chaire en IA Canada-CIFAR
Professeure adjointe, McGill University, École d'informatique
Sujets de recherche
Apprentissage de représentations
Apprentissage sur graphes
Exploration des données
Réseaux de neurones en graphes
Traitement du langage naturel

Biographie

Reihaneh Rabbany est professeure adjointe à l'École d'informatique de l'Université McGill. Elle est membre du corps professoral de Mila – Institut québécois d’intelligence artificielle et titulaire d'une chaire en IA Canada-CIFAR. Elle est également membre du corps enseignant du Centre pour l’étude de la citoyenneté démocratique de McGill. Avant de se joindre à l’Université McGill, elle a été boursière postdoctorale à la School of Computer Science de l'Université Carnegie Mellon. Elle a obtenu un doctorat à l’Université de l’Alberta, au Département d'informatique. Elle dirige le laboratoire de données complexes, dont les recherches se situent à l'intersection de la science des réseaux, de l'exploration des données et de l'apprentissage automatique, et se concentrent sur l'analyse des données interconnectées du monde réel et sur les applications sociales.

Étudiants actuels

Maîtrise recherche - McGill
Superviseur⋅e principal⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Collaborateur·rice alumni - McGill
Co-superviseur⋅e :
Stagiaire de recherche - McGill
Maîtrise recherche - McGill
Maîtrise recherche - McGill
Co-superviseur⋅e :
Maîtrise recherche - McGill
Maîtrise recherche - McGill
Co-superviseur⋅e :
Collaborateur·rice alumni - McGill
Collaborateur·rice de recherche
Collaborateur·rice de recherche - McGill University
Collaborateur·rice de recherche - McGill
Stagiaire de recherche - McGill
Maîtrise recherche - McGill
Maîtrise recherche - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - UdeM
Superviseur⋅e principal⋅e :
Doctorat - McGill
Stagiaire de recherche - McGill
Maîtrise recherche - UdeM
Superviseur⋅e principal⋅e :

Publications

Veracity: An Open-Source AI Fact-Checking System
Maximilian Puelma Touzel
William Garneau
Manon Gruaz
Mike Pinder
Li Wei Wang
Sukanya Krishna
Luda Cohen
The proliferation of misinformation poses a significant threat to society, exacerbated by the capabilities of generative AI. This demo paper… (voir plus) introduces Veracity, an open-source AI system designed to empower individuals to combat misinformation through transparent and accessible fact-checking. Veracity leverages the synergy between Large Language Models (LLMs) and web retrieval agents to analyze user-submitted claims and provide grounded veracity assessments with intuitive explanations. Key features include multilingual support, numerical scoring of claim veracity, and an interactive interface inspired by familiar messaging applications. This paper will showcase Veracity's ability to not only detect misinformation but also explain its reasoning, fostering media literacy and promoting a more informed society.
Veracity: An Open-Source AI Fact-Checking System
Maximilian Puelma Touzel
William Garneau
Manon Gruaz
Mike Pinder
Li Wei Wang
Sukanya Krishna
Luda Cohen
The proliferation of misinformation poses a significant threat to society, exacerbated by the capabilities of generative AI. This demo paper… (voir plus) introduces Veracity, an open-source AI system designed to empower individuals to combat misinformation through transparent and accessible fact-checking. Veracity leverages the synergy between Large Language Models (LLMs) and web retrieval agents to analyze user-submitted claims and provide grounded veracity assessments with intuitive explanations. Key features include multilingual support, numerical scoring of claim veracity, and an interactive interface inspired by familiar messaging applications. This paper will showcase Veracity's ability to not only detect misinformation but also explain its reasoning, fostering media literacy and promoting a more informed society.
A Systematic Literature Review of Large Language Model Applications in the Algebra Domain
AIF-GEN: Open-Source Platform and Synthetic Dataset Suite for Reinforcement Learning on Large Language Models
TGM: A Modular Framework for Machine Learning on Temporal Graphs
While deep learning on static graphs has been revolutionized by standardized libraries like PyTorch Geometric and DGL, machine learning on T… (voir plus)emporal Graphs (TG), networks that evolve over time, lacks comparable software infrastructure. Existing TG libraries are limited in scope, focusing on a single method category or specific algorithms. We introduce Temporal Graph Modelling (TGM), a comprehensive framework for machine learning on temporal graphs to address this gap. Through a modular architecture, TGM is the first library to support both discrete and continuous-time TG methods and implements a wide range of TG methods. The TGM framework combines an intuitive front-end API with an optimized backend storage, enabling reproducible research and efficient experimentation at scale. Key features include graph-level optimizations for offline training and built-in performance profiling capabilities. Through extensive benchmarking on five real-world networks, TGM is up to 6 times faster than the widely used DyGLib library on TGN and TGAT models and up to 8 times faster than the UTG framework for converting edges into coarse-grained snapshots.
Are Large Language Models Good Temporal Graph Learners?
Large Language Models (LLMs) have recently driven significant advancements in Natural Language Processing and various other applications. Wh… (voir plus)ile a broad range of literature has explored the graph-reasoning capabilities of LLMs, including their use of predictors on graphs, the application of LLMs to dynamic graphs -- real world evolving networks -- remains relatively unexplored. Recent work studies synthetic temporal graphs generated by random graph models, but applying LLMs to real-world temporal graphs remains an open question. To address this gap, we introduce Temporal Graph Talker (TGTalker), a novel temporal graph learning framework designed for LLMs. TGTalker utilizes the recency bias in temporal graphs to extract relevant structural information, converted to natural language for LLMs, while leveraging temporal neighbors as additional information for prediction. TGTalker demonstrates competitive link prediction capabilities compared to existing Temporal Graph Neural Network (TGNN) models. Across five real-world networks, TGTalker performs competitively with state-of-the-art temporal graph methods while consistently outperforming popular models such as TGN and HTGN. Furthermore, TGTalker generates textual explanations for each prediction, thus opening up exciting new directions in explainability and interpretability for temporal link prediction. The code is publicly available at https://github.com/shenyangHuang/TGTalker.
Are Large Language Models Good Temporal Graph Learners?
Large Language Models (LLMs) have recently driven significant advancements in Natural Language Processing and various other applications. Wh… (voir plus)ile a broad range of literature has explored the graph-reasoning capabilities of LLMs, including their use of predictors on graphs, the application of LLMs to dynamic graphs -- real world evolving networks -- remains relatively unexplored. Recent work studies synthetic temporal graphs generated by random graph models, but applying LLMs to real-world temporal graphs remains an open question. To address this gap, we introduce Temporal Graph Talker (TGTalker), a novel temporal graph learning framework designed for LLMs. TGTalker utilizes the recency bias in temporal graphs to extract relevant structural information, converted to natural language for LLMs, while leveraging temporal neighbors as additional information for prediction. TGTalker demonstrates competitive link prediction capabilities compared to existing Temporal Graph Neural Network (TGNN) models. Across five real-world networks, TGTalker performs competitively with state-of-the-art temporal graph methods while consistently outperforming popular models such as TGN and HTGN. Furthermore, TGTalker generates textual explanations for each prediction, thus opening up exciting new directions in explainability and interpretability for temporal link prediction. The code is publicly available at https://github.com/shenyangHuang/TGTalker.
Weak Supervision for Real World Graphs
From Intuition to Understanding: Using AI Peers to Overcome Physics Misconceptions
Ruben Weijers
Denton Wu
Hannah Betts
Tamara Jacod
Yuxiang Guan
Kushal Dev
Toshali Goel
William Delooze
Ying Wu
Generative AI has the potential to transform personalization and accessibility of education. However, it raises serious concerns about accur… (voir plus)acy and helping students become independent critical thinkers. In this study, we designed a helpful yet fallible AI "Peer" to help students correct fundamental physics misconceptions related to Newtonian mechanic concepts. In contrast to approaches that seek near-perfect accuracy to create an authoritative AI tutor or teacher, we directly inform students that this AI can answer up to 40\% of questions incorrectly. In a randomized controlled trial with 165 students, those who engaged in targeted dialogue with the AI Peer achieved post-test scores that were, on average, 10.5 percentage points higher—with over 20 percentage points higher normalized gain—than a control group that discussed physics history. Qualitative feedback indicated that 91% of the treatment group's AI interactions were rated as helpful. Furthermore, by comparing student performance on pre- and post-test questions about the same concept, along with experts' annotations of the AI interactions, we find initial evidence suggesting the improvement in performance does not depend on the correctness of the AI. With further research, the AI Peer paradigm described here could open new possibilities for how we learn, adapt to, and grow with AI.
A Guide to Misinformation Detection Data and Evaluation
Gabrielle Péloquin-Skulski
James Zhou
Florence Laflamme
Yuxiang Guan
Misinformation is a complex societal issue, and mitigating solutions are difficult to create due to data deficiencies. To address this probl… (voir plus)em, we have curated the largest collection of (mis)information datasets in the literature, totaling 75. From these, we evaluated the quality of all of the 36 datasets that consist of statements or claims, as well as the 9 datasets that consists of data in purely paragraph form. We assess these datasets to identify those with solid foundations for empirical work and those with flaws that could result in misleading and non-generalizable results, such as insufficient label quality, spurious correlations. We further provide state-of-the-art baselines on all these datasets, but show that regardless of label quality, categorical labels may no longer give an accurate evaluation of detection model performance. We discuss alternatives to mitigate this problem. Overall, this guide aims to provide a roadmap for obtaining higher quality data and conducting more effective evaluations, ultimately improving research in misinformation detection. All datasets and other artifacts are available at [anonymized].
Rethinking Anti-Misinformation AI
This paper takes a position on how anti-misinformation AI works should be developed for the online misinformation context. We observe that t… (voir plus)he current literature is dominated by works that produce more information for users to process and that this function faces various challenges in bringing meaningful effects to reality. We use anti-misinformation insights from other domains to suggest a redirection of the existing line of work and identify an under-explored opportunity AI can facilitate exploring.
Rethinking Anti-Misinformation AI
This paper takes a position on how anti-misinformation AI works should be developed for the online misinformation context. We observe that t… (voir plus)he current literature is dominated by works that produce more information for users to process and that this function faces various challenges in bringing meaningful effects to reality. We use anti-misinformation insights from other domains to suggest a redirection of the existing line of work and identify an under-explored opportunity AI can facilitate exploring.