Portrait de Victor Livernoche

Victor Livernoche

Doctorat - McGill
Superviseur⋅e principal⋅e
Sujets de recherche
Apprentissage profond
Détection d'anomalies
Modèles génératifs
Réseaux sociaux

Publications

OpenFake: An Open Dataset and Platform Toward Large-Scale Deepfake Detection
Deepfakes, synthetic media created using advanced AI techniques, have intensified the spread of misinformation, particularly in politically … (voir plus)sensitive contexts. Existing deepfake detection datasets are often limited, relying on outdated generation methods, low realism, or single-face imagery, restricting the effectiveness for general synthetic image detection. By analyzing social media posts, we identify multiple modalities through which deepfakes propagate misinformation. Furthermore, our human perception study demonstrates that recently developed proprietary models produce synthetic images increasingly indistinguishable from real ones, complicating accurate identification by the general public. Consequently, we present a comprehensive, politically-focused dataset specifically crafted for benchmarking detection against modern generative models. This dataset contains three million real images paired with descriptive captions, which are used for generating 963k corresponding high-quality synthetic images from a mix of proprietary and open-source models. Recognizing the continual evolution of generative techniques, we introduce an innovative crowdsourced adversarial platform, where participants are incentivized to generate and submit challenging synthetic images. This ongoing community-driven initiative ensures that deepfake detection methods remain robust and adaptive, proactively safeguarding public discourse from sophisticated misinformation threats.
On Diffusion Modeling for Anomaly Detection
Known for their impressive performance in generative modeling, diffusion models are attractive candidates for density-based anomaly detectio… (voir plus)n. This paper investigates different variations of diffusion modeling for unsupervised and semi-supervised anomaly detection. In particular, we find that Denoising Diffusion Probability Models (DDPM) are performant on anomaly detection benchmarks yet computationally expensive. By simplifying DDPM in application to anomaly detection, we are naturally led to an alternative approach called Diffusion Time Estimation (DTE). DTE estimates the distribution over diffusion time for a given input and uses the mode or mean of this distribution as the anomaly score. We derive an analytical form for this density and leverage a deep neural network to improve inference efficiency. Through empirical evaluations on the ADBench benchmark, we demonstrate that all diffusion-based anomaly detection methods perform competitively for both semi-supervised and unsupervised settings. Notably, DTE achieves orders of magnitude faster inference time than DDPM, while outperforming it on this benchmark. These results establish diffusion-based anomaly detection as a scalable alternative to traditional methods and recent deep-learning techniques for standard unsupervised and semi-supervised anomaly detection settings.