Portrait de Vincent Taboga

Vincent Taboga

Représentant du laboratoire
Postdoctorat
Sujets de recherche
Apprentissage par renforcement
Apprentissage profond
Optimisation
Systèmes dynamiques

Biographie

Je suis postdoctorant à Mila, où je travaille sur l'apprentissage par renforcement et le contrôle optimal appliqués à des problèmes concrets. Je m'intéresse particulièrement au contrôle optimal des systèmes énergétiques afin de réduire les impacts du changement climatique. Auparavant, j’ai réalisé mon doctorat à Polytechnique et Mila sur l'optimisation des systèmes de chauffage et de refroidissement dans les bâtiments.

Quand je ne réfléchis pas aux systèmes de chauffage, je suis passionné par le sport. Après avoir pratiqué la natation en compétition pendant de nombreuses années, je me suis tourné vers l'escalade il y a quelques années. J'adore également préparer des pizzas.

Publications

What Matters when Modeling Human Behavior using Imitation Learning?
As AI systems become increasingly embedded in human decision-making process, aligning their behavior with human values is critical to ensuri… (voir plus)ng safe and trustworthy deployment. A central approach to AI Alignment called Imitation Learning (IL), trains a learner to directly mimic desirable human behaviors from expert demonstrations. However, standard IL methods assume that (1) experts act to optimize expected returns; (2) expert policies are Markovian. Both assumptions are inconsistent with empirical findings from behavioral economics, according to which humans are (1) risk-sensitive; and (2) make decisions based on past experience. In this work, we examine the implications of risk sensitivity for IL and show that standard approaches do not capture all optimal policies under risk-sensitive decision criteria. By characterizing these expert policies, we identify key limitations of existing IL algorithms in replicating expert performance in risk-sensitive settings. Our findings underscore the need for new IL frameworks that account for both risk-aware preferences and temporal dependencies to faithfully align AI behavior with human experts.
A Distributed ADMM-Based Deep Learning Approach for Thermal Control in Multi-Zone Buildings Under Demand Response Events.
A Distributed ADMM-based Deep Learning Approach for Thermal Control in Multi-Zone Buildings
The surge in electricity use, coupled with the dependency on intermittent renewable energy sources, poses significant hurdles to effectively… (voir plus) managing power grids, particularly during times of peak demand. Demand Response programs and energy conservation measures are essential to operate energy grids while ensuring a responsible use of our resources This research combines distributed optimization using ADMM with Deep Learning models to plan indoor temperature setpoints effectively. A two-layer hierarchical structure is used, with a central building coordinator at the upper layer and local controllers at the thermal zone layer. The coordinator must limit the building's maximum power by translating the building's total power to local power targets for each zone. Local controllers can modify the temperature setpoints to meet the local power targets. The resulting control algorithm, called Distributed Planning Networks, is designed to be both adaptable and scalable to many types of buildings, tackling two of the main challenges in the development of such systems. The proposed approach is tested on an 18-zone building modeled in EnergyPlus. The algorithm successfully manages Demand Response peak events.
Neural differential equations for temperature control in buildings under demand response programs
Clement Gehring
Mathieu Le Cam
Neural differential equations for temperature control in buildings under demand response programs
Clement Gehring
Mathieu Le Cam