A joint initiative of CIFAR and Mila, the AI Insights for Policymakers Program connects decision-makers with leading AI researchers through office hours and policy feasibility testing. The next session will be held on October 9 and 10.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Offline-to-online reinforcement learning (RL) has emerged as a practical paradigm that leverages offline datasets for pretraining and online… (see more) interactions for fine-tuning. However, its empirical behavior is highly inconsistent: design choices of online-fine tuning that work well in one setting can fail completely in another. We propose a stability--plasticity principle that can explain this inconsistency: we should preserve the knowledge of pretrained policy or offline dataset during online fine-tuning, whichever is better, while maintaining sufficient plasticity. This perspective identifies three regimes of online fine-tuning, each requiring distinct stability properties. We validate this framework through a large-scale empirical study, finding that the results strongly align with its predictions in 45 of 63 cases. This work provides a principled framework for guiding design choices in offline-to-online RL based on the relative performance of the offline dataset and the pretrained policy.
A key approach to state abstraction is approximating behavioral metrics (notably, bisimulation metrics) in the observation space, and embed … (see more)these learned distances in the representation space. While promising for robustness to task-irrelevant noise shown in prior work, accurately estimating these metrics remains challenging, requiring various design choices that create gaps between theory and practice.
Prior evaluations focus mainly on final returns, leaving the quality of learned metrics and the source of performance gains unclear.
To systematically assess how metric learning works in deep RL, we evaluate five recent approaches. We unify them under isometric embedding, identify key design choices, and benchmark them with baselines across 20 state-based and 14 pixel-based tasks, spanning 250+ configurations with diverse noise settings.
Beyond final returns, we introduce the denoising factor to quantify the encoder’s ability to filter distractions. To further isolate the effect of metric learning, we propose an isolated metric estimation setting, where the encoder is influenced solely by the metric loss.
Our results show that metric learning improves return and denoising only marginally, as its benefits fade when key design choices, such as layer normalization and self-prediction loss, are incorporated into the baseline. We also find that commonly used benchmarks (e.g., grayscale videos, varying state-based Gaussian noise dimensions) add little difficulty, while Gaussian noise with random projection and pixel-based Gaussian noise remain challenging even for the best methods.
Finally, we release an open-source, modular codebase to improve reproducibility and support future research on metric learning in deep RL.
A key approach to state abstraction is approximating behavioral metrics (notably, bisimulation metrics) in the observation space, and embed … (see more)these learned distances in the representation space. While promising for robustness to task-irrelevant noise shown in prior work, accurately estimating these metrics remains challenging, requiring various design choices that create gaps between theory and practice.
Prior evaluations focus mainly on final returns, leaving the quality of learned metrics and the source of performance gains unclear.
To systematically assess how metric learning works in deep RL, we evaluate five recent approaches. We unify them under isometric embedding, identify key design choices, and benchmark them with baselines across 20 state-based and 14 pixel-based tasks, spanning 250+ configurations with diverse noise settings.
Beyond final returns, we introduce the denoising factor to quantify the encoder’s ability to filter distractions. To further isolate the effect of metric learning, we propose an isolated metric estimation setting, where the encoder is influenced solely by the metric loss.
Our results show that metric learning improves return and denoising only marginally, as its benefits fade when key design choices, such as layer normalization and self-prediction loss, are incorporated into the baseline. We also find that commonly used benchmarks (e.g., grayscale videos, varying state-based Gaussian noise dimensions) add little difficulty, while Gaussian noise with random projection and pixel-based Gaussian noise remain challenging even for the best methods.
Finally, we release an open-source, modular codebase to improve reproducibility and support future research on metric learning in deep RL.
Representations are at the core of all deep reinforcement learning (RL) methods for both Markov decision processes (MDPs) and partially obse… (see more)rvable Markov decision processes (POMDPs). Many representation learning methods and theoretical frameworks have been developed to understand what constitutes an effective representation. However, the relationships between these methods and the shared properties among them remain unclear. In this paper, we show that many of these seemingly distinct methods and frameworks for state and history abstractions are, in fact, based on a common idea of self-predictive abstraction. Furthermore, we provide theoretical insights into the widely adopted objectives and optimization, such as the stop-gradient technique, in learning self-predictive representations. These findings together yield a minimalist algorithm to learn self-predictive representations for states and histories. We validate our theories by applying our algorithm to standard MDPs, MDPs with distractors, and POMDPs with sparse rewards. These findings culminate in a set of preliminary guidelines for RL practitioners.
Representations are at the core of all deep reinforcement learning (RL) methods for both Markov decision processes (MDPs) and partially obse… (see more)rvable Markov decision processes (POMDPs). Many representation learning methods and theoretical frameworks have been developed to understand what constitutes an effective representation. However, the relationships between these methods and the shared properties among them remain unclear. In this paper, we show that many of these seemingly distinct methods and frameworks for state and history abstractions are, in fact, based on a common idea of self-predictive abstraction. Furthermore, we provide theoretical insights into the widely adopted objectives and optimization, such as the stop-gradient technique, in learning self-predictive representations. These findings together yield a minimalist algorithm to learn self-predictive representations for states and histories. We validate our theories by applying our algorithm to standard MDPs, MDPs with distractors, and POMDPs with sparse rewards. These findings culminate in a set of preliminary guidelines for RL practitioners.
Representations are at the core of all deep reinforcement learning (RL) methods for both Markov decision processes (MDPs) and partially obse… (see more)rvable Markov decision processes (POMDPs). Many representation learning methods and theoretical frameworks have been developed to understand what constitutes an effective representation. However, the relationships between these methods and the shared properties among them remain unclear. In this paper, we show that many of these seemingly distinct methods and frameworks for state and history abstractions are, in fact, based on a common idea of self-predictive abstraction. Furthermore, we provide theoretical insights into the widely adopted objectives and optimization, such as the stop-gradient technique, in learning self-predictive representations. These findings together yield a minimalist algorithm to learn self-predictive representations for states and histories. We validate our theories by applying our algorithm to standard MDPs, MDPs with distractors, and POMDPs with sparse rewards. These findings culminate in a set of preliminary guidelines for RL practitioners.
Representations are at the core of all deep reinforcement learning (RL) methods for both Markov decision processes (MDPs) and partially obse… (see more)rvable Markov decision processes (POMDPs). Many representation learning methods and theoretical frameworks have been developed to understand what constitutes an effective representation. However, the relationships between these methods and the shared properties among them remain unclear. In this paper, we show that many of these seemingly distinct methods and frameworks for state and history abstractions are, in fact, based on a common idea of self-predictive abstraction. Furthermore, we provide theoretical insights into the widely adopted objectives and optimization, such as the stop-gradient technique, in learning self-predictive representations. These findings together yield a minimalist algorithm to learn self-predictive representations for states and histories. We validate our theories by applying our algorithm to standard MDPs, MDPs with distractors, and POMDPs with sparse rewards. These findings culminate in a set of preliminary guidelines for RL practitioners.
Reinforcement learning (RL) algorithms face two distinct challenges: learning effective representations of past and present observations, an… (see more)d determining how actions influence future returns. Both challenges involve modeling long-term dependencies. The Transformer architecture has been very successful to solve problems that involve long-term dependencies, including in the RL domain. However, the underlying reason for the strong performance of Transformer-based RL methods remains unclear: is it because they learn effective memory, or because they perform effective credit assignment? After introducing formal definitions of memory length and credit assignment length, we design simple configurable tasks to measure these distinct quantities. Our empirical results reveal that Transformers can enhance the memory capability of RL algorithms, scaling up to tasks that require memorizing observations