Portrait of Yihao Sun

Yihao Sun

PhD - Université de Montréal
Supervisor
Research Topics
Deep Learning
Reinforcement Learning

Publications

The Three Regimes of Offline-to-Online Reinforcement Learning
Offline-to-online reinforcement learning (RL) has emerged as a practical paradigm that leverages offline datasets for pretraining and online… (see more) interactions for fine-tuning. However, its empirical behavior is highly inconsistent: design choices of online-fine tuning that work well in one setting can fail completely in another. We propose a stability--plasticity principle that can explain this inconsistency: we should preserve the knowledge of pretrained policy or offline dataset during online fine-tuning, whichever is better, while maintaining sufficient plasticity. This perspective identifies three regimes of online fine-tuning, each requiring distinct stability properties. We validate this framework through a large-scale empirical study, finding that the results strongly align with its predictions in 45 of 63 cases. This work provides a principled framework for guiding design choices in offline-to-online RL based on the relative performance of the offline dataset and the pretrained policy.
Planning with Unified Multimodal Models
Zhilong Zhang
Yang Yu
With the powerful reasoning capabilities of large language models (LLMs) and vision-language models (VLMs), many recent works have explored … (see more)using them for decision-making. However, most of these approaches rely solely on language-based reasoning, which limits their ability to reason and make informed decisions. Recently, a promising new direction has emerged with unified multimodal models (UMMs), which support both multimodal inputs and outputs. We believe such models have greater potential for decision-making by enabling reasoning through generated visual content. To this end, we propose Uni-Plan, a planning framework built on UMMs. Within this framework, a single model simultaneously serves as the policy, dynamics model, and value function. In addition, to avoid hallucinations in dynamics predictions, we present a novel approach self-discriminated filtering, where the generative model serves as a self-discriminator to filter out invalid dynamics predictions. Experiments on long-horizon planning tasks show that Uni-Plan substantially improves success rates compared to VLM-based methods, while also showing strong data scalability, requiring no expert demonstrations and achieving better performance under the same training-data size. This work lays a foundation for future research in reasoning and decision-making with UMMs.