Le Studio d'IA pour le climat de Mila vise à combler l’écart entre la technologie et l'impact afin de libérer le potentiel de l'IA pour lutter contre la crise climatique rapidement et à grande échelle.
Hugo Larochelle nommé directeur scientifique de Mila
Professeur associé à l’Université de Montréal et ancien responsable du laboratoire de recherche en IA de Google à Montréal, Hugo Larochelle est un pionnier de l’apprentissage profond et fait partie des chercheur·euses les plus respecté·es au Canada.
Perspectives sur l’IA pour les responsables des politiques
Co-dirigé par Mila et le CIFAR, ce programme met en relation les décideur·euse·s avec des chercheur·euse·s de pointe en IA grâce à une combinaison de consultations ouvertes et d'exercices de test de faisabilité des politiques. La prochaine session aura lieu les 9 et 10 octobre.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
In this review, we aim to inspire research into 001 S elf-S upervised S hared S emantic S pace ( S5 ) 002 multimodal learning problems. We e… (voir plus)quip non-003 expert researchers with a framework of in-004 formed modeling decisions via an extensive 005 literature review, an actionable modeling check-006 list, as well as a series of novel zero-shot eval-007 uation tasks. The core idea for our S5 check-008 list lies in learning contextual multimodal in-009 teractions at various granularity levels via a 010 shared Transformer encoder with a denoising 011 loss term, which is also regularized by a con-012 trastive loss term to induce a semantic align-013 ment prior on the contextual embedding space. 014 Essentially, we aim to model human concept 015 understanding and thus learn to “put a name to 016 a face”. This ultimately enables interpretable 017 zero-shot S5 generalization on a variety of 018 novel downstream tasks. In summary, this re-019 view provides sufficient background and ac-020 tionable strategies for training cutting-edge S5 021 multimodal networks. 022
Seeing things or seeing scenes: Investigating the capabilities of V&L models to align scene descriptions to images
Images can be described in terms of the objects 001 they contain, or in terms of the types of scene 002 or place that they instantiate. In t… (voir plus)his paper we 003 address to what extent pretrained Vision and 004 Language models can learn to align descrip-005 tions of both types with images. We com-006 pare 3 state-of-the-art models, VisualBERT, 007 LXMERT and CLIP. We find that (i) V&L 008 models are susceptible to stylistic biases ac-009 quired during pretraining; (ii) only CLIP per-010 forms consistently well on both object-and 011 scene-level descriptions. A follow-up ablation 012 study shows that CLIP uses object-level infor-013 mation in the visual modality to align with 014 scene-level textual descriptions