Portrait of Hyeonah Kim is unavailable

Hyeonah Kim

Postdoctorate - Université de Montréal
Co-supervisor
Research Topics
AI for Science
Deep Learning

Publications

Improved Off-policy Reinforcement Learning in Biological Sequence Design
Designing biological sequences with desired properties is challenging due to vast search spaces and limited evaluation budgets. Although rei… (see more)nforcement learning methods use proxy models for rapid reward evaluation, insufficient training data can cause proxy misspecification on out-of-distribution inputs. To address this, we propose a novel off-policy search,
Ant Colony Sampling with GFlowNets for Combinatorial Optimization
Improved Off-policy Reinforcement Learning in Biological Sequence Design
Alex Hern'andez-Garc'ia
Jinkyoo Park
Designing biological sequences with desired properties is a significant challenge due to the combinatorially vast search space and the high … (see more)cost of evaluating each candidate sequence. To address these challenges, reinforcement learning (RL) methods, such as GFlowNets, utilize proxy models for rapid reward evaluation and annotated data for policy training. Although these approaches have shown promise in generating diverse and novel sequences, the limited training data relative to the vast search space often leads to the misspecification of proxy for out-of-distribution inputs. We introduce
Improved Off-policy Reinforcement Learning in Biological Sequence Design
Designing biological sequences with desired properties is a significant challenge due to the combinatorially vast search space and the high … (see more)cost of evaluating each candidate sequence. To address these challenges, reinforcement learning (RL) methods, such as GFlowNets, utilize proxy models for rapid reward evaluation and annotated data for policy training. Although these approaches have shown promise in generating diverse and novel sequences, the limited training data relative to the vast search space often leads to the misspecification of proxy for out-of-distribution inputs. We introduce