Portrait de Yoshua Bengio

Yoshua Bengio

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur titulaire, Université de Montréal, Département d'informatique et de recherche opérationnelle
Fondateur et Conseiller scientifique, Équipe de direction
Sujets de recherche
Apprentissage automatique médical
Apprentissage de représentations
Apprentissage par renforcement
Apprentissage profond
Causalité
Modèles génératifs
Modèles probabilistes
Modélisation moléculaire
Neurosciences computationnelles
Raisonnement
Réseaux de neurones en graphes
Réseaux de neurones récurrents
Théorie de l'apprentissage automatique
Traitement du langage naturel

Biographie

*Pour toute demande média, veuillez écrire à medias@mila.quebec.

Pour plus d’information, contactez Marie-Josée Beauchamp, adjointe administrative à marie-josee.beauchamp@mila.quebec.

Reconnu comme une sommité mondiale en intelligence artificielle, Yoshua Bengio s’est surtout distingué par son rôle de pionnier en apprentissage profond, ce qui lui a valu le prix A. M. Turing 2018, le « prix Nobel de l’informatique », avec Geoffrey Hinton et Yann LeCun. Il est professeur titulaire à l’Université de Montréal, fondateur et conseiller scientifique de Mila – Institut québécois d’intelligence artificielle, et codirige en tant que senior fellow le programme Apprentissage automatique, apprentissage biologique de l'Institut canadien de recherches avancées (CIFAR). Il occupe également la fonction de conseiller spécial et directeur scientifique fondateur d’IVADO.

En 2018, il a été l’informaticien qui a recueilli le plus grand nombre de nouvelles citations au monde. En 2019, il s’est vu décerner le prestigieux prix Killam. Depuis 2022, il détient le plus grand facteur d’impact (h-index) en informatique à l’échelle mondiale. Il est fellow de la Royal Society de Londres et de la Société royale du Canada, et officier de l’Ordre du Canada.

Soucieux des répercussions sociales de l’IA et de l’objectif que l’IA bénéficie à tous, il a contribué activement à la Déclaration de Montréal pour un développement responsable de l’intelligence artificielle.

Étudiants actuels

Collaborateur·rice alumni - McGill
Collaborateur·rice alumni - UdeM
Collaborateur·rice de recherche - Cambridge University
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Visiteur de recherche indépendant - KAIST
Visiteur de recherche indépendant
Co-superviseur⋅e :
Doctorat - UdeM
Collaborateur·rice de recherche - N/A
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Collaborateur·rice de recherche - KAIST
Stagiaire de recherche - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Stagiaire de recherche - UdeM
Doctorat - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - UdeM
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - UdeM
Collaborateur·rice alumni - UdeM
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - UdeM
Collaborateur·rice alumni - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni
Doctorat - UdeM
Collaborateur·rice alumni - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Collaborateur·rice de recherche - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Visiteur de recherche indépendant - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - Ying Wu Coll of Computing
Doctorat - University of Waterloo
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - Max-Planck-Institute for Intelligent Systems
Stagiaire de recherche - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Postdoctorat - UdeM
Visiteur de recherche indépendant - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - UdeM
Maîtrise recherche - UdeM
Collaborateur·rice alumni - UdeM
Maîtrise recherche - UdeM
Visiteur de recherche indépendant - Technical University of Munich
Doctorat - UdeM
Co-superviseur⋅e :
Postdoctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - UdeM
Collaborateur·rice de recherche
Stagiaire de recherche - UdeM
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :

Publications

Cooperative Semi-Supervised Transfer Learning of Machine Reading Comprehension
Oliver Bender
Franz Josef Och
R´ejean Ducharme
Kevin Clark
Quoc Minh-Thang Luong
V. Le
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Adam Fisch
Alon Talmor
Robin Jia
Minjoon Seo
Michael R. Glass
A. Gliozzo
Rishav Chakravarti
Ian J Goodfellow
Jean Pouget-Abadie … (voir 39 de plus)
Mehdi Mirza
Serhii Havrylov
Ivan Titov. 2017
Emergence
Jun-Tao He
Jiatao Gu
Jiajun Shen
Marc’Aurelio
Matthew Henderson
I. Casanueva
Nikola Mrkˇsi´c
Pei-hao Su
Tsung-Hsien Wen
Ivan Vuli´c
Yikang Shen
Yi Tay
Che Zheng
Dara Bahri
Donald
Metzler Aaron
Courville
Structformer
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Thomas Wolf
Lysandre Debut
Julien Victor Sanh
Clement Chaumond
Anthony Delangue
Pier-339 Moi
Tim ric Cistac
R´emi Rault
Morgan Louf
Qizhe Xie
Eduard H. Hovy
Silei Xu
Sina Jandaghi Semnani
Giovanni Campagna
Pretrained language models have significantly 001 improved the performance of down-stream 002 language understanding tasks, including ex-00… (voir plus)3 tractive question answering, by providing 004 high-quality contextualized word embeddings. 005 However, training question answering models 006 still requires large amounts of annotated data 007 for specific domains. In this work, we pro-008 pose a cooperative, self-play learning frame-009 work, REGEX, for automatically generating 010 more non-trivial question-answer pairs to im-011 prove model performance. REGEX is built 012 upon a masked answer extraction task with an 013 interactive learning environment containing an 014 answer entity REcognizer, a question Gener-015 ator, and an answer EXtractor. Given a pas-016 sage with a masked entity, the generator gen-017 erates a question around the entity, and the 018 extractor is trained to extract the masked en-019 tity with the generated question and raw texts. 020 The framework allows the training of question 021 generation and answering models on any text 022 corpora without annotation. We further lever-023 age a reinforcement learning technique to re-024 ward generating high-quality questions and to 025 improve the answer extraction model’s perfor-026 mance. Experiment results show that REGEX 027 outperforms the state-of-the-art (SOTA) pre-028 trained language models and transfer learning 029 approaches on standard question-answering 030 benchmarks, and yields the new SOTA per-031 formance under given model size and transfer 032 learning settings. 033
Dynamic Inference with Neural Interpreters
Nasim Rahaman
Muhammad Waleed Gondal
Shruti Joshi
Peter Vincent Gehler
Francesco Locatello
Bernhard Schölkopf
Modern neural network architectures can leverage large amounts of data to generalize well within the training distribution. However, they ar… (voir plus)e less capable of systematic generalization to data drawn from unseen but related distributions, a feat that is hypothesized to require compositional reasoning and reuse of knowledge. In this work, we present Neural Interpreters, an architecture that factorizes inference in a self-attention network as a system of modules, which we call _functions_. Inputs to the model are routed through a sequence of functions in a way that is end-to-end learned. The proposed architecture can flexibly compose computation along width and depth, and lends itself well to capacity extension after training. To demonstrate the versatility of Neural Interpreters, we evaluate it in two distinct settings: image classification and visual abstract reasoning on Raven Progressive Matrices. In the former, we show that Neural Interpreters perform on par with the vision transformer using fewer parameters, while being transferrable to a new task in a sample efficient manner. In the latter, we find that Neural Interpreters are competitive with respect to the state-of-the-art in terms of systematic generalization.
An End-to-End Framework for Molecular Conformation Generation via Bilevel Programming
Minkai Xu
Wujie Wang
Shitong Luo
Chence Shi
Rafael G'omez-bombarelli
Predicting molecular conformations (or 3D structures) from molecular graphs is a fundamental problem in many applications. Most existing app… (voir plus)roaches are usually divided into two steps by first predicting the distances between atoms and then generating a 3D structure through optimizing a distance geometry problem. However, the distances predicted with such two-stage approaches may not be able to consistently preserve the geometry of local atomic neighborhoods, making the generated structures unsatisfying. In this paper, we propose an end-to-end solution for molecular conformation prediction called ConfVAE based on the conditional variational autoencoder framework. Specifically, the molecular graph is first encoded in a latent space, and then the 3D structures are generated by solving a principled bilevel optimization program. Extensive experiments on several benchmark data sets prove the effectiveness of our proposed approach over existing state-of-the-art approaches. Code is available at https://github.com/MinkaiXu/ConfVAE-ICML21.
Episodes Meta Sequence S 2 Fast Update Slow Update Fast Update Slow Update
Kanika Madan
Nan Rosemary Ke
Anirudh Goyal
Bernhard Schölkopf
Decomposing knowledge into interchangeable pieces promises a generalization advantage when there are changes in distribution. A learning age… (voir plus)nt interacting with its environment is likely to be faced with situations requiring novel combinations of existing pieces of knowledge. We hypothesize that such a decomposition of knowledge is particularly relevant for being able to generalize in a systematic manner to out-of-distribution changes. To study these ideas, we propose a particular training framework in which we assume that the pieces of knowledge an agent needs and its reward function are stationary and can be re-used across tasks. An attention mechanism dynamically selects which modules can be adapted to the current task, and the parameters of the selected modules are allowed to change quickly as the learner is confronted with variations in what it experiences, while the parameters of the attention mechanisms act as stable, slowly changing, metaparameters.We focus on pieces of knowledge captured by an ensemble of modules sparsely communicating with each other via a bottleneck of attention. We find that meta-learning the modular aspects of the proposed system greatly helps in achieving faster adaptation in a reinforcement learning setup involving navigation in a partially observed grid world with image-level input. We also find that reversing the role of parameters and meta-parameters does not work nearly as well, suggesting a particular role for fast adaptation of the dynamically selected modules.
Explaining by Analogy: Case-based Abductive Natural Language Inference
Ruben Cartuyvels
Graham Spinks
Marie Francine
Peter Clark
Isaac Cowhey
Oren Etzioni
Tushar Khot
Rajarshi Das
Ameya Godbole
Shehzaad Dhuliawala
Manzil Zaheer
Andrew McCallum
Dung Ngoc Thai
Ameya
Ethan Godbole
Jay-Yoon Perez
Lee
Lizhen
Ramón López De Mántaras
David Mcsherry … (voir 37 de plus)
David Bridge
Barry Leake
Susan Smyth
Craw.
Boi
Maryalice Faltings
Michael T Maher
Ken-552 Cox
Dorottya Demszky
Kelvin Guu
Percy Liang
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Daniel Fried
Peter Jansen
Gus Hahn-Powell
Higher-575
Rebecca Emilie Sharp
M. Surdeanu
Zhengnan Xie
Sebastian Thiem
Jaycie Ryrholm Martin
Eliz-721 abeth Wainwright
Steven Marmorstein
Wenhan Xiong
Xiang Lorraine Li
Srini Iyer
Jingfei Du
Vikas Yadav
Steven Bethard
Zhilin Yang
Peng Qi
Saizheng Zhang
William W Cohen
Russ Salakhutdinov
Existing accounts of explanation emphasise 001 the role of prior experience and analogy in 002 the solution of new problems. However, most 0… (voir plus)03 of the contemporary models for multi-hop tex-004 tual inference construct explanations consider-005 ing each test case in isolation. This paradigm 006 is known to suffer from semantic drift, which 007 causes the construction of spurious explana-008 tions leading to wrong predictions. In con-009 trast, we propose an abductive framework for 010 multi-hop inference that adopts the retrieve - 011 reuse - revise paradigm largely studied in case-012 based reasoning . Specifically, we present 013 ETNA ( E xplana t io n by A nalogy), a novel 014 model that addresses unseen inference prob-015 lems by retrieving and adapting prior expla-016 nations from similar training examples. We 017 empirically evaluate the case-based abductive 018 framework on downstream commonsense and 019 scientific reasoning tasks. Our experiments 020 demonstrate that ETNA can be effectively in-021 tegrated with sparse and dense encoding mech-022 anisms or downstream transformers, achiev-023 ing strong performance when compared to ex-024 isting explainable approaches. Moreover, we 025 study the impact of the retrieve - reuse - revise 026 paradigm on explainability and semantic drift, 027 showing that it boosts the quality of the con-028 structed explanations, resulting in improved 029 downstream inference performance. 030
Exploring the Wasserstein metric for time-to-event analysis.
Tristan Sylvain
Margaux Luck
Joseph Paul Cohen
Heloise Cardinal
Andrea Lodi
Exploring the Wasserstein metric for survival analysis
Tristan Sylvain
Margaux Luck
Joseph Paul Cohen
Andrea Lodi
Survival analysis is a type of semi-supervised task where the target output (the survival time) is often right-censored. Utilizing this info… (voir plus)rmation is a challenge because it is not obvious how to correctly incorporate these censored examples into a model. We study how three categories of loss functions can take advantage of this information: partial likelihood methods, rank methods, and our own classification method based on a Wasserstein metric (WM) and the non-parametric Kaplan Meier (KM) estimate of the probability density to impute the labels of censored examples. The proposed method predicts the probability distribution of an event, letting us compute survival curves and expected times of survival that are easier to interpret than the rank. We also demonstrate that this approach directly optimizes the expected C-index which is the most common evaluation metric for survival models.
Factorizing Declarative and Procedural Knowledge in Structured, Dynamical Environments
Anirudh Goyal
Alex Lamb
Phanideep Gampa
Philippe Beaudoin
Charles Blundell
Sergey Levine
Michael Curtis Mozer
Fast and Slow Learning of Recurrent Independent Mechanisms
Kanika Madan
Nan Rosemary Ke
Anirudh Goyal
Bernhard Schölkopf
Decomposing knowledge into interchangeable pieces promises a generalization advantage when there are changes in distribution. A learning age… (voir plus)nt interacting with its environment is likely to be faced with situations requiring novel combinations of existing pieces of knowledge. We hypothesize that such a decomposition of knowledge is particularly relevant for being able to generalize in a systematic manner to out-of-distribution changes. To study these ideas, we propose a particular training framework in which we assume that the pieces of knowledge an agent needs and its reward function are stationary and can be re-used across tasks. An attention mechanism dynamically selects which modules can be adapted to the current task, and the parameters of the selected modules are allowed to change quickly as the learner is confronted with variations in what it experiences, while the parameters of the attention mechanisms act as stable, slowly changing, meta-parameters. We focus on pieces of knowledge captured by an ensemble of modules sparsely communicating with each other via a bottleneck of attention. We find that meta-learning the modular aspects of the proposed system greatly helps in achieving faster adaptation in a reinforcement learning setup involving navigation in a partially observed grid world with image-level input. We also find that reversing the role of parameters and meta-parameters does not work nearly as well, suggesting a particular role for fast adaptation of the dynamically selected modules.
Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation
Moksh J. Jain
Maksym Korablyov
This paper is about the problem of learning a stochastic policy for generating an object (like a molecular graph) from a sequence of actions… (voir plus), such that the probability of generating an object is proportional to a given positive reward for that object. Whereas standard return maximization tends to converge to a single return-maximizing sequence, there are cases where we would like to sample a diverse set of high-return solutions. These arise, for example, in black-box function optimization when few rounds are possible, each with large batches of queries, where the batches should be diverse, e.g., in the design of new molecules. One can also see this as a problem of approximately converting an energy function to a generative distribution. While MCMC methods can achieve that, they are expensive and generally only perform local exploration. Instead, training a generative policy amortizes the cost of search during training and yields to fast generation. Using insights from Temporal Difference learning, we propose GFlowNet, based on a view of the generative process as a flow network, making it possible to handle the tricky case where different trajectories can yield the same final state, e.g., there are many ways to sequentially add atoms to generate some molecular graph. We cast the set of trajectories as a flow and convert the flow consistency equations into a learning objective, akin to the casting of the Bellman equations into Temporal Difference methods. We prove that any global minimum of the proposed objectives yields a policy which samples from the desired distribution, and demonstrate the improved performance and diversity of GFlowNet on a simple domain where there are many modes to the reward function, and on a molecule synthesis task.
Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization
Kartik Ahuja
Ethan Caballero
Dinghuai Zhang
Jean-Christophe Gagnon-Audet
The invariance principle from causality is at the heart of notable approaches such as invariant risk minimization (IRM) that seek to address… (voir plus) out-of-distribution (OOD) generalization failures. Despite the promising theory, invariance principle-based approaches fail in common classification tasks, where invariant (causal) features capture all the information about the label. Are these failures due to the methods failing to capture the invariance? Or is the invariance principle itself insufficient? To answer these questions, we revisit the fundamental assumptions in linear regression tasks, where invariance-based approaches were shown to provably generalize OOD. In contrast to the linear regression tasks, we show that for linear classification tasks we need much stronger restrictions on the distribution shifts, or otherwise OOD generalization is impossible. Furthermore, even with appropriate restrictions on distribution shifts in place, we show that the invariance principle alone is insufficient. We prove that a form of the information bottleneck constraint along with invariance helps address key failures when invariant features capture all the information about the label and also retains the existing success when they do not. We propose an approach that incorporates both of these principles and demonstrate its effectiveness in several experiments.
Learning Neural Generative Dynamics for Molecular Conformation Generation
Minkai Xu
Shitong Luo
Jian Peng
We study how to generate molecule conformations (i.e., 3D structures) from a molecular graph. Traditional methods, such as molecular dynamic… (voir plus)s, sample conformations via computationally expensive simulations. Recently, machine learning methods have shown great potential by training on a large collection of conformation data. Challenges arise from the limited model capacity for capturing complex distributions of conformations and the difficulty in modeling long-range dependencies between atoms. Inspired by the recent progress in deep generative models, in this paper, we propose a novel probabilistic framework to generate valid and diverse conformations given a molecular graph. We propose a method combining the advantages of both flow-based and energy-based models, enjoying: (1) a high model capacity to estimate the multimodal conformation distribution; (2) explicitly capturing the complex long-range dependencies between atoms in the observation space. Extensive experiments demonstrate the superior performance of the proposed method on several benchmarks, including conformation generation and distance modeling tasks, with a significant improvement over existing generative models for molecular conformation sampling.