Portrait of Maksym Korablyov is unavailable

Maksym Korablyov

Alumni

Publications

Generative Active Learning for the Search of Small-molecule Protein Binders
Cheng-Hao Liu
Moksh J. Jain
Almer M. van der Sloot
Eric Jolicoeur
Edward Ruediger
Daniel St-Cyr
Doris Alexandra Schuetz
Victor I Butoi
Simon R. Blackburn
Sai Krishna Gottipati
Prateek Gupta
Sasikanth Avancha
William L. Hamilton
Brooks Paige
Sanchit Misra
Stanisław Jastrzębski
Bharat Kaul
José Miguel Hernández-Lobato
Marwin Segler
Michael M. Bronstein
Anne Marinier
Mike Tyers
Despite substantial progress in machine learning for scientific discovery in recent years, truly de novo design of small molecules which exh… (see more)ibit a property of interest remains a significant challenge. We introduce LambdaZero, a generative active learning approach to search for synthesizable molecules. Powered by deep reinforcement learning, LambdaZero learns to search over the vast space of molecules to discover candidates with a desired property. We apply LambdaZero with molecular docking to design novel small molecules that inhibit the enzyme soluble Epoxide Hydrolase 2 (sEH), while enforcing constraints on synthesizability and drug-likeliness. LambdaZero provides an exponential speedup in terms of the number of calls to the expensive molecular docking oracle, and LambdaZero de novo designed molecules reach docking scores that would otherwise require the virtual screening of a hundred billion molecules. Importantly, LambdaZero discovers novel scaffolds of synthesizable, drug-like inhibitors for sEH. In in vitro experimental validation, a series of ligands from a generated quinazoline-based scaffold were synthesized, and the lead inhibitor N-(4,6-di(pyrrolidin-1-yl)quinazolin-2-yl)-N-methylbenzamide (UM0152893) displayed sub-micromolar enzyme inhibition of sEH.
A community effort in SARS-CoV-2 drug discovery.
Johannes Schimunek
Philipp Seidl
Katarina Elez
Tim Hempel
Tuan Le
Frank Noé
Simon Olsson
Lluís Raich
Robin Winter
Hatice Gokcan
Filipp Gusev
Evgeny M. Gutkin
Olexandr Isayev
Maria G. Kurnikova
Chamali H. Narangoda
Roman Zubatyuk
Ivan P. Bosko
Konstantin V. Furs
Anna D. Karpenko
Yury V. Kornoushenko … (see 133 more)
Mikita Shuldau
Artsemi Yushkevich
Mohammed B. Benabderrahmane
Patrick Bousquet‐Melou
Ronan Bureau
Beatrice Charton
Bertrand C. Cirou
Gérard Gil
William J. Allen
Suman Sirimulla
Stanley Watowich
Nick Antonopoulos
Nikolaos Epitropakis
Agamemnon Krasoulis
Vassilis Pitsikalis
Stavros Theodorakis
Igor Kozlovskii
Anton Maliutin
Alexander Medvedev
Petr Popov
Mark Zaretckii
Hamid Eghbal‐Zadeh
Christina Halmich
Sepp Hochreiter
Andreas Mayr
Peter Ruch
Michael Widrich
Francois Berenger
Ashutosh Kumar
Yoshihiro Yamanishi
Kam Y. J. Zhang
Moksh J. Jain
Cheng-Hao Liu
Gilles Marcou
M. Gilles
Enrico Glaab
Kelly Barnsley
Suhasini M. Iyengar
Mary Jo Ondrechen
V. Joachim Haupt
Florian Kaiser
Michael Schroeder
Luisa Pugliese
Simone Albani
Christina Athanasiou
Andrea Beccari
Paolo Carloni
Giulia D'Arrigo
Eleonora Gianquinto
Jonas Goßen
Anton Hanke
Benjamin P. Joseph
Daria B. Kokh
Sandra Kovachka
Candida Manelfi
Goutam Mukherjee
Abraham Muñiz‐Chicharro
Francesco Musiani
Ariane Nunes‐Alves
Giulia Paiardi
Giulia Rossetti
S. Kashif Sadiq
Francesca Spyrakis
Carmine Talarico
Alexandros Tsengenes
Rebecca C. Wade
Conner Copeland
Jeremiah Gaiser
Daniel R. Olson
Amitava Roy
Vishwesh Venkatraman
Travis J. Wheeler
Haribabu Arthanari
Klara Blaschitz
Marco Cespugli
Vedat Durmaz
Konstantin Fackeldey
Patrick D. Fischer
Christoph Gorgulla
Christian Gruber
Karl Gruber
Michael Hetmann
Jamie E. Kinney
Krishna M. Padmanabha Das
Shreya Pandita
Amit Singh
Georg Steinkellner
Guilhem Tesseyre
Gerhard Wagner
Zi‐Fu Wang
Ryan J. Yust
Dmitry S. Druzhilovskiy
Dmitry A. Filimonov
Pavel V. Pogodin
Vladimir Poroikov
Anastassia V. Rudik
Leonid A. Stolbov
Alexander V. Veselovsky
Maria De Rosa
Giada De Simone
Maria R. Gulotta
Jessica Lombino
Nedra Mekni
Ugo Perricone
Arturo Casini
Amanda Embree
D. Benjamin Gordon
David Lei
Katelin Pratt
Christopher A. Voigt
Kuang‐Yu Chen
Yves Jacob
Tim Krischuns
Pierre Lafaye
Agnès Zettor
M. Luis Rodríguez
Kris M. White
Daren Fearon
Frank Von Delft
Martin A. Walsh
Dragos Horvath
Charles L. Brooks
Babak Falsafi
Bryan Ford
Adolfo García‐Sastre
Sang Yup Lee
Nadia Naffakh
Alexandre Varnek
Günter Klambauer
Thomas M. Hermans
The COVID-19 pandemic continues to pose a substantial threat to human lives and is likely to do so for years to come. Despite the availabili… (see more)ty of vaccines, searching for efficient small-molecule drugs that are widely available, including in low- and middle-income countries, is an ongoing challenge. In this work, we report the results of an open science community effort, the "Billion molecules against Covid-19 challenge", to identify small-molecule inhibitors against SARS-CoV-2 or relevant human receptors. Participating teams used a wide variety of computational methods to screen a minimum of 1 billion virtual molecules against 6 protein targets. Overall, 31 teams participated, and they suggested a total of 639,024 molecules, which were subsequently ranked to find 'consensus compounds'. The organizing team coordinated with various contract research organizations (CROs) and collaborating institutions to synthesize and test 878 compounds for biological activity against proteases (Nsp5, Nsp3, TMPRSS2), nucleocapsid N, RdRP (only the Nsp12 domain), and (alpha) spike protein S. Overall, 27 compounds with weak inhibition/binding were experimentally identified by binding-, cleavage-, and/or viral suppression assays and are presented here. Open science approaches such as the one presented here contribute to the knowledge base of future drug discovery efforts in finding better SARS-CoV-2 treatments.
RECOVER identifies synergistic drug combinations in vitro through sequential model optimization
Thomas Gaudelet
Andrew Anighoro
Torsten Gross
Francisco Martínez-Peña
Eileen L. Tang
M.S. Suraj
Cristian Regep
Jeremy B.R. Hayter
Nicholas Valiante
Mike Tyers
Charles E.S. Roberts
Michael M. Bronstein
Luke L. Lairson
Jake P. Taylor-King
Thompson Sampling for Improved Exploration in GFlowNets
Generative flow networks (GFlowNets) are amortized variational inference algorithms that treat sampling from a distribution over composition… (see more)al objects as a sequential decision-making problem with a learnable action policy. Unlike other algorithms for hierarchical sampling that optimize a variational bound, GFlowNet algorithms can stably run off-policy, which can be advantageous for discovering modes of the target distribution. Despite this flexibility in the choice of behaviour policy, the optimal way of efficiently selecting trajectories for training has not yet been systematically explored. In this paper, we view the choice of trajectories for training as an active learning problem and approach it using Bayesian techniques inspired by methods for multi-armed bandits. The proposed algorithm, Thompson sampling GFlowNets (TS-GFN), maintains an approximate posterior distribution over policies and samples trajectories from this posterior for training. We show in two domains that TS-GFN yields improved exploration and thus faster convergence to the target distribution than the off-policy exploration strategies used in past work.
DEUP: Direct Epistemic Uncertainty Prediction
Epistemic Uncertainty is a measure of the lack of knowledge of a learner which diminishes with more evidence. While existing work focuses on… (see more) using the variance of the Bayesian posterior due to parameter uncertainty as a measure of epistemic uncertainty, we argue that this does not capture the part of lack of knowledge induced by model misspecification. We discuss how the excess risk, which is the gap between the generalization error of a predictor and the Bayes predictor, is a sound measure of epistemic uncertainty which captures the effect of model misspecification. We thus propose a principled framework for directly estimating the excess risk by learning a secondary predictor for the generalization error and subtracting an estimate of aleatoric uncertainty, i.e., intrinsic unpredictability. We discuss the merits of this novel measure of epistemic uncertainty, and highlight how it differs from variance-based measures of epistemic uncertainty and addresses its major pitfall. Our framework, Direct Epistemic Uncertainty Prediction (DEUP) is particularly interesting in interactive learning environments, where the learner is allowed to acquire novel examples in each round. Through a wide set of experiments, we illustrate how existing methods in sequential model optimization can be improved with epistemic uncertainty estimates from DEUP, and how DEUP can be used to drive exploration in reinforcement learning. We also evaluate the quality of uncertainty estimates from DEUP for probabilistic image classification and predicting synergies of drug combinations.
Learning GFlowNets from partial episodes for improved convergence and stability
Generative flow networks (GFlowNets) are a family of algorithms for training a sequential sampler of discrete objects under an unnormalized … (see more)target density and have been successfully used for various probabilistic modeling tasks. Existing training objectives for GFlowNets are either local to states or transitions, or propagate a reward signal over an entire sampling trajectory. We argue that these alternatives represent opposite ends of a gradient bias-variance tradeoff and propose a way to exploit this tradeoff to mitigate its harmful effects. Inspired by the TD(
RetroGNN: Fast Estimation of Synthesizability for Virtual Screening and De Novo Design by Learning from Slow Retrosynthesis Software
Cheng-Hao Liu
Stanisław Jastrzębski
Paweł Włodarczyk-Pruszyński
Marwin Segler
E VALUATING G ENERALIZATION IN GF LOW N ETS FOR M OLECULE D ESIGN
Moksh J. Jain
Cheng-Hao Liu
Michael M. Bronstein
Deep learning bears promise for drug discovery problems such as de novo molecular design. Generating data to train such models is a costly a… (see more)nd time-consuming process, given the need for wet-lab experiments or expensive simulations. This problem is compounded by the notorious data-hungriness of machine learning algorithms. In small molecule generation the recently proposed GFlowNet method has shown good performance in generating diverse high-scoring candidates, and has the interesting advantage of being an off-policy offline method. Finding an appropriate generalization evaluation metric for such models, one predictive of the desired search performance (i.e. finding high-scoring diverse candidates), will help guide online data collection for such an algorithm. In this work, we develop techniques for evaluating GFlowNet performance on a test set, and identify the most promising metric for predicting generalization. We present empirical results on several small-molecule design tasks in drug discovery, for several GFlowNet training setups, and we find a metric strongly correlated with diverse high-scoring batch generation. This metric should be used to identify the best generative model from which to sample batches of molecules to be evaluated.
RECOVER: sequential model optimization platform for combination drug repurposing identifies novel synergistic compounds in vitro
Thomas Gaudelet
Andrew Anighoro
Torsten Gross
Francisco Martínez-Peña
Eileen L. Tang
S. SurajM
Cristian Regep
Jeremy B.R. Hayter
N. Valiante
Almer M. van der Sloot
Mike Tyers
Charles E.S. Roberts
Michael M. Bronstein
Luke Lee Lairson
Jake P. Taylor-King
Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation
This paper is about the problem of learning a stochastic policy for generating an object (like a molecular graph) from a sequence of actions… (see more), such that the probability of generating an object is proportional to a given positive reward for that object. Whereas standard return maximization tends to converge to a single return-maximizing sequence, there are cases where we would like to sample a diverse set of high-return solutions. These arise, for example, in black-box function optimization when few rounds are possible, each with large batches of queries, where the batches should be diverse, e.g., in the design of new molecules. One can also see this as a problem of approximately converting an energy function to a generative distribution. While MCMC methods can achieve that, they are expensive and generally only perform local exploration. Instead, training a generative policy amortizes the cost of search during training and yields to fast generation. Using insights from Temporal Difference learning, we propose GFlowNet, based on a view of the generative process as a flow network, making it possible to handle the tricky case where different trajectories can yield the same final state, e.g., there are many ways to sequentially add atoms to generate some molecular graph. We cast the set of trajectories as a flow and convert the flow consistency equations into a learning objective, akin to the casting of the Bellman equations into Temporal Difference methods. We prove that any global minimum of the proposed objectives yields a policy which samples from the desired distribution, and demonstrate the improved performance and diversity of GFlowNet on a simple domain where there are many modes to the reward function, and on a molecule synthesis task.
RetroGNN: Approximating Retrosynthesis by Graph Neural Networks for De Novo Drug Design
Cheng-Hao Liu
Stanisław Jastrzębski
Paweł Włodarczyk-Pruszyński
Marwin Segler
De novo molecule generation often results in chemically unfeasible molecules. A natural idea to mitigate this problem is to bias the search … (see more)process towards more easily synthesizable molecules using a proxy for synthetic accessibility. However, using currently available proxies still results in highly unrealistic compounds. We investigate the feasibility of training deep graph neural networks to approximate the outputs of a retrosynthesis planning software, and their use to bias the search process. We evaluate our method on a benchmark involving searching for drug-like molecules with antibiotic properties. Compared to enumerating over five million existing molecules from the ZINC database, our approach finds molecules predicted to be more likely to be antibiotics while maintaining good drug-like properties and being easily synthesizable. Importantly, our deep neural network can successfully filter out hard to synthesize molecules while achieving a