A joint initiative of CIFAR and Mila, the AI Insights for Policymakers Program connects decision-makers with leading AI researchers through office hours and policy feasibility testing. The next session will be held on October 9 and 10.
Mila’s AI for Climate Studio aims to bridge the gap between technology and impact to unlock the potential of AI in tackling the climate crisis rapidly and on a massive scale.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Public protein sequence databases contain samples from the fitness landscape explored by nature. Protein language models (pLMs) pre-trained … (see more)on these sequences aim to capture this landscape for tasks like property prediction and protein design. Following the same trend as in natural language processing, pLMs have continuously been scaled up. However, the premise that scale leads to better performance assumes that source databases provide accurate representation of the underlying fitness landscape, which is likely false. By developing an efficient codebase, designing a modern architecture, and addressing data quality concerns such as sample bias, we introduce AMPLIFY, a best-in-class pLM that is orders of magnitude less expensive to train and deploy than previous models. Furthermore, to support the scientific community and democratize the training of pLMs, we have open-sourced AMPLIFY’s pre-training codebase, data, and model checkpoints.