Portrait de Yoshua Bengio

Yoshua Bengio

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur titulaire, Université de Montréal, Département d'informatique et de recherche opérationnelle
Fondateur et Conseiller scientifique, Équipe de direction
Sujets de recherche
Apprentissage automatique médical
Apprentissage de représentations
Apprentissage par renforcement
Apprentissage profond
Causalité
Modèles génératifs
Modèles probabilistes
Modélisation moléculaire
Neurosciences computationnelles
Raisonnement
Réseaux de neurones en graphes
Réseaux de neurones récurrents
Théorie de l'apprentissage automatique
Traitement du langage naturel

Biographie

*Pour toute demande média, veuillez écrire à medias@mila.quebec.

Pour plus d’information, contactez Marie-Josée Beauchamp, adjointe administrative à marie-josee.beauchamp@mila.quebec.

Reconnu comme une sommité mondiale en intelligence artificielle, Yoshua Bengio s’est surtout distingué par son rôle de pionnier en apprentissage profond, ce qui lui a valu le prix A. M. Turing 2018, le « prix Nobel de l’informatique », avec Geoffrey Hinton et Yann LeCun. Il est professeur titulaire à l’Université de Montréal, fondateur et conseiller scientifique de Mila – Institut québécois d’intelligence artificielle, et codirige en tant que senior fellow le programme Apprentissage automatique, apprentissage biologique de l'Institut canadien de recherches avancées (CIFAR). Il occupe également la fonction de conseiller spécial et directeur scientifique fondateur d’IVADO.

En 2018, il a été l’informaticien qui a recueilli le plus grand nombre de nouvelles citations au monde. En 2019, il s’est vu décerner le prestigieux prix Killam. Depuis 2022, il détient le plus grand facteur d’impact (h-index) en informatique à l’échelle mondiale. Il est fellow de la Royal Society de Londres et de la Société royale du Canada, et officier de l’Ordre du Canada.

Soucieux des répercussions sociales de l’IA et de l’objectif que l’IA bénéficie à tous, il a contribué activement à la Déclaration de Montréal pour un développement responsable de l’intelligence artificielle.

Étudiants actuels

Collaborateur·rice alumni - McGill
Collaborateur·rice alumni - UdeM
Collaborateur·rice de recherche - Cambridge University
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Collaborateur·rice alumni - Université du Québec à Rimouski
Visiteur de recherche indépendant
Co-superviseur⋅e :
Doctorat - UdeM
Collaborateur·rice alumni - UQAR
Collaborateur·rice de recherche - N/A
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Collaborateur·rice de recherche - KAIST
Collaborateur·rice alumni - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Doctorat - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Stagiaire de recherche - UdeM
Stagiaire de recherche - UdeM
Doctorat
Doctorat - UdeM
Maîtrise recherche - UdeM
Co-superviseur⋅e :
Collaborateur·rice alumni - UdeM
Stagiaire de recherche - UdeM
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - UdeM
Collaborateur·rice alumni - UdeM
Collaborateur·rice alumni - UdeM
Collaborateur·rice alumni - UdeM
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni
Collaborateur·rice alumni - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Collaborateur·rice alumni - UdeM
Collaborateur·rice alumni - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Collaborateur·rice de recherche - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Visiteur de recherche indépendant - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - Ying Wu Coll of Computing
Doctorat - University of Waterloo
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - Max-Planck-Institute for Intelligent Systems
Doctorat - UdeM
Postdoctorat - UdeM
Visiteur de recherche indépendant - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - UdeM
Maîtrise recherche - UdeM
Collaborateur·rice alumni - UdeM
Stagiaire de recherche - UdeM
Maîtrise recherche - UdeM
Visiteur de recherche indépendant - Technical University of Munich
Doctorat - UdeM
Co-superviseur⋅e :
Collaborateur·rice de recherche - RWTH Aachen University (Rheinisch-Westfälische Technische Hochschule Aachen)
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - UdeM
Collaborateur·rice alumni - UdeM
Collaborateur·rice de recherche
Collaborateur·rice de recherche - KAIST
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :

Publications

Generating Multiscale Amorphous Molecular Structures Using Deep Learning: A Study in 2D.
Michael Kilgour
Nicolas Gastellu
David Y. T. Hui
Lena Simine
Amorphous molecular assemblies appear in a vast array of systems: from living cells to chemical plants and from everyday items to new device… (voir plus)s. The absence of long-range order in amorphous materials implies that precise knowledge of their underlying structures throughout is needed to rationalize and control their properties at the mesoscale. Standard computational simulations suffer from exponentially unfavorable scaling of the required compute with system size. We present a method based on deep learning that leverages the finite range of structural correlations for an autoregressive generation of disordered molecular aggregates up to arbitrary size from small-scale computational or experimental samples. We benchmark performance on self-assembled nanoparticle aggregates and proceed to simulate monolayer amorphous carbon with atomistic resolution. This method bridges the gap between the nanoscale and mesoscale simulations of amorphous molecular systems.
A learning-based algorithm to quickly compute good primal solutions for Stochastic Integer Programs
Andrea Lodi
Rahul Anuj Patel
Sriram Sankaranarayanan
Mastering Rate based Curriculum Learning
Lucas Willems
Salem Lahlou
Deriving Differential Target Propagation from Iterating Approximate Inverses
Predicting COVID-19 Pneumonia Severity on Chest X-ray With Deep Learning
Joseph Paul Cohen
Lan Dao
Paul Morrison
Karsten Roth
Beiyi Shen
Almas F Abbasi
Hoshmand Kochi Mahsa
Marzyeh Ghassemi
Haifang Li
Tim Q Duong
Introduction The need to streamline patient management for coronavirus disease-19 (COVID-19) has become more pressing than ever. Chest X-ray… (voir plus)s (CXRs) provide a non-invasive (potentially bedside) tool to monitor the progression of the disease. In this study, we present a severity score prediction model for COVID-19 pneumonia for frontal chest X-ray images. Such a tool can gauge the severity of COVID-19 lung infections (and pneumonia in general) that can be used for escalation or de-escalation of care as well as monitoring treatment efficacy, especially in the ICU. Methods Images from a public COVID-19 database were scored retrospectively by three blinded experts in terms of the extent of lung involvement as well as the degree of opacity. A neural network model that was pre-trained on large (non-COVID-19) chest X-ray datasets is used to construct features for COVID-19 images which are predictive for our task. Results This study finds that training a regression model on a subset of the outputs from this pre-trained chest X-ray model predicts our geographic extent score (range 0-8) with 1.14 mean absolute error (MAE) and our lung opacity score (range 0-6) with 0.78 MAE. Conclusions These results indicate that our model’s ability to gauge the severity of COVID-19 lung infections could be used for escalation or de-escalation of care as well as monitoring treatment efficacy, especially in the ICU. To enable follow up work, we make our code, labels, and data available online.
BabyAI 1.1
David Y. T. Hui
Maxime Chevalier-Boisvert
BabyAI 1.1
David Y. T. Hui
Maxime Chevalier-Boisvert
The BabyAI platform is designed to measure the sample efficiency of training an agent to follow grounded-language instructions. BabyAI 1.0 p… (voir plus)resents baseline results of an agent trained by deep imitation or reinforcement learning. BabyAI 1.1 improves the agent's architecture in three minor ways. This increases reinforcement learning sample efficiency by up to 3 times and improves imitation learning performance on the hardest level from 77 % to 90.4 %. We hope that these improvements increase the computational efficiency of BabyAI experiments and help users design better agents.
S2RMs: Spatially Structured Recurrent Modules
Nasim Rahaman
Anirudh Goyal
Muhammad Waleed Gondal
Manuel Wüthrich
Stefan Bauer
Y. Sharma
Bernhard Schölkopf
Compositional Generalization by Factorizing Alignment and Translation
Jacob Russin
Jason Jo
R. O’Reilly
Exploiting Syntactic Structure for Better Language Modeling: A Syntactic Distance Approach
Wenyu Du
Zhouhan Lin
Yikang Shen
Yue Sara Zhang
It is commonly believed that knowledge of syntactic structure should improve language modeling. However, effectively and computationally eff… (voir plus)iciently incorporating syntactic structure into neural language models has been a challenging topic. In this paper, we make use of a multi-task objective, i.e., the models simultaneously predict words as well as ground truth parse trees in a form called “syntactic distances”, where information between these two separate objectives shares the same intermediate representation. Experimental results on the Penn Treebank and Chinese Treebank datasets show that when ground truth parse trees are provided as additional training signals, the model is able to achieve lower perplexity and induce trees with better quality.
Factorized embeddings learns rich and biologically meaningful embedding spaces using factorized tensor decomposition
Assya Trofimov
Joseph Paul Cohen
Claude Perreault
Object Files and Schemata: Factorizing Declarative and Procedural Knowledge in Dynamical Systems
Anirudh Goyal
Alex Lamb
Phanideep Gampa
Philippe Beaudoin
Sergey Levine
Charles Blundell
Michael Curtis Mozer