Portrait de Yoshua Bengio

Yoshua Bengio

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur titulaire, Université de Montréal, Département d'informatique et de recherche opérationnelle
Fondateur et Conseiller scientifique, Équipe de direction
Sujets de recherche
Apprentissage automatique médical
Apprentissage de représentations
Apprentissage par renforcement
Apprentissage profond
Causalité
Modèles génératifs
Modèles probabilistes
Modélisation moléculaire
Neurosciences computationnelles
Raisonnement
Réseaux de neurones en graphes
Réseaux de neurones récurrents
Théorie de l'apprentissage automatique
Traitement du langage naturel

Biographie

*Pour toute demande média, veuillez écrire à medias@mila.quebec.

Pour plus d’information, contactez Marie-Josée Beauchamp, adjointe administrative à marie-josee.beauchamp@mila.quebec.

Reconnu comme une sommité mondiale en intelligence artificielle, Yoshua Bengio s’est surtout distingué par son rôle de pionnier en apprentissage profond, ce qui lui a valu le prix A. M. Turing 2018, le « prix Nobel de l’informatique », avec Geoffrey Hinton et Yann LeCun. Il est professeur titulaire à l’Université de Montréal, fondateur et conseiller scientifique de Mila – Institut québécois d’intelligence artificielle, et codirige en tant que senior fellow le programme Apprentissage automatique, apprentissage biologique de l'Institut canadien de recherches avancées (CIFAR). Il occupe également la fonction de conseiller spécial et directeur scientifique fondateur d’IVADO.

En 2018, il a été l’informaticien qui a recueilli le plus grand nombre de nouvelles citations au monde. En 2019, il s’est vu décerner le prestigieux prix Killam. Depuis 2022, il détient le plus grand facteur d’impact (h-index) en informatique à l’échelle mondiale. Il est fellow de la Royal Society de Londres et de la Société royale du Canada, et officier de l’Ordre du Canada.

Soucieux des répercussions sociales de l’IA et de l’objectif que l’IA bénéficie à tous, il a contribué activement à la Déclaration de Montréal pour un développement responsable de l’intelligence artificielle.

Étudiants actuels

Collaborateur·rice alumni - McGill
Collaborateur·rice alumni - UdeM
Collaborateur·rice de recherche - Cambridge University
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Collaborateur·rice alumni - Université du Québec à Rimouski
Visiteur de recherche indépendant
Co-superviseur⋅e :
Doctorat - UdeM
Collaborateur·rice alumni - UQAR
Collaborateur·rice de recherche - N/A
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Collaborateur·rice de recherche - KAIST
Collaborateur·rice alumni - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Doctorat - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Stagiaire de recherche - UdeM
Stagiaire de recherche - UdeM
Doctorat
Doctorat - UdeM
Maîtrise recherche - UdeM
Co-superviseur⋅e :
Collaborateur·rice alumni - UdeM
Stagiaire de recherche - UdeM
Collaborateur·rice de recherche - UdeM
Collaborateur·rice alumni - UdeM
Collaborateur·rice alumni - UdeM
Collaborateur·rice alumni - UdeM
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni
Collaborateur·rice alumni - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Collaborateur·rice alumni - UdeM
Collaborateur·rice alumni - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Collaborateur·rice de recherche - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Visiteur de recherche indépendant - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - Ying Wu Coll of Computing
Doctorat - University of Waterloo
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - Max-Planck-Institute for Intelligent Systems
Doctorat - UdeM
Postdoctorat - UdeM
Visiteur de recherche indépendant - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - UdeM
Maîtrise recherche - UdeM
Collaborateur·rice alumni - UdeM
Stagiaire de recherche - UdeM
Maîtrise recherche - UdeM
Visiteur de recherche indépendant - Technical University of Munich
Doctorat - UdeM
Co-superviseur⋅e :
Collaborateur·rice de recherche - RWTH Aachen University (Rheinisch-Westfälische Technische Hochschule Aachen)
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - UdeM
Collaborateur·rice alumni - UdeM
Collaborateur·rice de recherche
Collaborateur·rice de recherche - KAIST
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :

Publications

Learning the Arrow of Time for Problems in Reinforcement Learning.
Nasim Rahaman
Steffen Wolf
Anirudh Goyal
Roman Remme
Meta Attention Networks: Meta Learning Attention To Modulate Information Between Sparsely Interacting Recurrent Modules
Kanika Madan
Nan Rosemary Ke
Anirudh Goyal
Decomposing knowledge into interchangeable pieces promises a generalization advantage when, at some level of representation, the learner is … (voir plus)likely to be faced with situations requiring novel combinations of existing pieces of knowledge or computation. We hypothesize that such a decomposition of knowledge is particularly relevant for higher levels of representation as we see this at work in human cognition and natural language in the form of systematicity or systematic generalization. To study these ideas, we propose a particular training framework in which we assume that the pieces of knowledge an agent needs, as well as its reward function are stationary and can be re-used across tasks and changes in distribution. As the learner is confronted with variations in experiences, the attention selects which modules should be adapted and the parameters of those selected modules are adapted fast, while the parameters of attention mechanisms are updated slowly as meta-parameters. We find that both the meta-learning and the modular aspects of the proposed system greatly help achieve faster learning in experiments with reinforcement learning setup involving navigation in a partially observed grid world.
A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms
Tristan Deleu
Nasim Rahaman
Nan Rosemary Ke
Sébastien Lachapelle
Olexa Bilaniuk
Anirudh Goyal
We propose to meta-learn causal structures based on how fast a learner adapts to new distributions arising from sparse distributional change… (voir plus)s, e.g. due to interventions, actions of agents and other sources of non-stationarities. We show that under this assumption, the correct causal structural choices lead to faster adaptation to modified distributions because the changes are concentrated in one or just a few mechanisms when the learned knowledge is modularized appropriately. This leads to sparse expected gradients and a lower effective number of degrees of freedom needing to be relearned while adapting to the change. It motivates using the speed of adaptation to a modified distribution as a meta-learning objective. We demonstrate how this can be used to determine the cause-effect relationship between two observed variables. The distributional changes do not need to correspond to standard interventions (clamping a variable), and the learner has no direct knowledge of these interventions. We show that causal structures can be parameterized via continuous variables and learned end-to-end. We then explore how these ideas could be used to also learn an encoder that would map low-level observed variables to unobserved causal variables leading to faster adaptation out-of-distribution, learning a representation space where one can satisfy the assumptions of independent mechanisms and of small and sparse changes in these mechanisms due to actions and non-stationarities.
N-BEATS: Neural basis expansion analysis for interpretable time series forecasting
Boris Oreshkin
Dmitri Carpov
We focus on solving the univariate times series point forecasting problem using deep learning. We propose a deep neural architecture based o… (voir plus)n backward and forward residual links and a very deep stack of fully-connected layers. The architecture has a number of desirable properties, being interpretable, applicable without modification to a wide array of target domains, and fast to train. We test the proposed architecture on several well-known datasets, including M3, M4 and TOURISM competition datasets containing time series from diverse domains. We demonstrate state-of-the-art performance for two configurations of N-BEATS for all the datasets, improving forecast accuracy by 11% over a statistical benchmark and by 3% over last year's winner of the M4 competition, a domain-adjusted hand-crafted hybrid between neural network and statistical time series models. The first configuration of our model does not employ any time-series-specific components and its performance on heterogeneous datasets strongly suggests that, contrarily to received wisdom, deep learning primitives such as residual blocks are by themselves sufficient to solve a wide range of forecasting problems. Finally, we demonstrate how the proposed architecture can be augmented to provide outputs that are interpretable without considerable loss in accuracy.
PAST DSAA KEYNOTE SPEAKERS
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs. By utilizing fas… (voir plus)t matrix block-approximation techniques, we propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions, while being able to meaningfully model local information of the graph (e.g., degrees) as well as global information (e.g., clustering coefficient, assortativity, etc.) if desired. This allows one to efficiently generate random networks with similar properties as an observed network, and the models can be used for several downstream tasks such as link prediction. Our methods are scalable to sparse graphs consisting of millions of nodes. Empirical evaluation demonstrates competitiveness in terms of both speed and accuracy with state-of-the-art methods—which are typically based on embedding the graph into some lowdimensional space— for link prediction, showcasing the potential of a more direct and interpretable probablistic model for this task.
Reinforcement Learning with Competitive Ensembles of Information-Constrained Primitives
Anirudh Goyal
Shagun Sodhani
Jonathan Binas
Xue Bin Peng
Sergey Levine
Reinforcement learning agents that operate in diverse and complex environments can benefit from the structured decomposition of their behavi… (voir plus)or. Often, this is addressed in the context of hierarchical reinforcement learning, where the aim is to decompose a policy into lower-level primitives or options, and a higher-level meta-policy that triggers the appropriate behaviors for a given situation. However, the meta-policy must still produce appropriate decisions in all states. In this work, we propose a policy design that decomposes into primitives, similarly to hierarchical reinforcement learning, but without a high-level meta-policy. Instead, each primitive can decide for themselves whether they wish to act in the current state. We use an information-theoretic mechanism for enabling this decentralized decision: each primitive chooses how much information it needs about the current state to make a decision and the primitive that requests the most information about the current state acts in the world. The primitives are regularized to use as little information as possible, which leads to natural competition and specialization. We experimentally demonstrate that this policy architecture improves over both flat and hierarchical policies in terms of generalization.
Small-GAN: Speeding Up GAN Training Using Core-sets
Samarth Sinha
Han Zhang
Anirudh Goyal
Augustus Odena
Recent work by Brock et al. (2018) suggests that Generative Adversarial Networks (GANs) benefit disproportionately from large mini-batch siz… (voir plus)es. Unfortunately, using large batches is slow and expensive on conventional hardware. Thus, it would be nice if we could generate batches that were effectively large though actually small. In this work, we propose a method to do this, inspired by the use of Coreset-selection in active learning. When training a GAN, we draw a large batch of samples from the prior and then compress that batch using Coreset-selection. To create effectively large batches of 'real' images, we create a cached dataset of Inception activations of each training image, randomly project them down to a smaller dimension, and then use Coreset-selection on those projected activations at training time. We conduct experiments showing that this technique substantially reduces training time and memory usage for modern GAN variants, that it reduces the fraction of dropped modes in a synthetic dataset, and that it allows GANs to reach a new state of the art in anomaly detection.
Systematicity in a Recurrent Neural Network by Factorizing Syntax and Semantics
Jacob Russin
Jason Jo
R. O’Reilly
Standard methods in deep learning fail to capture compositional or systematic structure in their training data, as shown by their inability … (voir plus)to generalize outside of the training distribution. However, human learners readily generalize in this way, e.g. by applying known grammatical rules to novel words. The inductive biases that might underlie this powerful cognitive capacity remain unclear. Inspired by work in cognitive science suggesting a functional distinction between systems for syntactic and semantic processing, we implement a modification to an existing deep learning architecture, imposing an analogous separation. The resulting architecture substantially out-performs standard recurrent networks on the SCAN dataset, a compositional generalization task, without any additional supervision. Our work suggests that separating syntactic from semantic learning may be a useful heuristic for capturing compositional structure, and highlights the potential of using cognitive principles to inform inductive biases in deep learning.
On the interplay between noise and curvature and its effect on optimization and generalization
Valentin Thomas
Fabian Pedregosa
Bart van Merriënboer
Pierre-Antoine Manzagol
The speed at which one can minimize an expected loss using stochastic methods depends on two properties: the curvature of the loss and the v… (voir plus)ariance of the gradients. While most previous works focus on one or the other of these properties, we explore how their interaction affects optimization speed. Further, as the ultimate goal is good generalization performance, we clarify how both curvature and noise are relevant to properly estimate the generalization gap. Realizing that the limitations of some existing works stems from a confusion between these matrices, we also clarify the distinction between the Fisher matrix, the Hessian, and the covariance matrix of the gradients.
The Variational Bandwidth Bottleneck: Stochastic Evaluation on an Information Budget
Anirudh Goyal
Matthew Botvinick
Sergey Levine
In many applications, it is desirable to extract only the relevant information from complex input data, which involves making a decision abo… (voir plus)ut which input features are relevant. The information bottleneck method formalizes this as an information-theoretic optimization problem by maintaining an optimal tradeoff between compression (throwing away irrelevant input information), and predicting the target. In many problem settings, including the reinforcement learning problems we consider in this work, we might prefer to compress only part of the input. This is typically the case when we have a standard conditioning input, such as a state observation, and a ``privileged'' input, which might correspond to the goal of a task, the output of a costly planning algorithm, or communication with another agent. In such cases, we might prefer to compress the privileged input, either to achieve better generalization (e.g., with respect to goals) or to minimize access to costly information (e.g., in the case of communication). Practical implementations of the information bottleneck based on variational inference require access to the privileged input in order to compute the bottleneck variable, so although they perform compression, this compression operation itself needs unrestricted, lossless access. In this work, we propose the variational bandwidth bottleneck, which decides for each example on the estimated value of the privileged information before seeing it, i.e., only based on the standard input, and then accordingly chooses stochastically, whether to access the privileged input or not. We formulate a tractable approximation to this framework and demonstrate in a series of reinforcement learning experiments that it can improve generalization and reduce access to computationally costly information.
Toward Training Recurrent Neural Networks for Lifelong Learning
Shagun Sodhani
Université de Montréal Balancing Signals for Semi-Supervised Sequence Learning
Training recurrent neural networks (RNNs) on long sequences using backpropagation through time (BPTT) remains a fundamental challenge. It ha… (voir plus)s been shown that adding a local unsupervised loss term into the optimization objective makes the training of RNNs on long sequences more effective. While the importance of an unsupervised task can in principle be controlled by a coefficient in the objective function, the gradients with respect to the unsupervised loss term still influence all the hidden state dimensions, which might cause important information about the supervised task to be degraded or erased. Compared to existing semi-supervised sequence learning methods, this thesis focuses upon a traditionally overlooked mechanism – an architecture with explicitly designed private and shared hidden units designed to mitigate the detrimental influence of the auxiliary unsupervised loss over the main supervised task. We achieve this by dividing the RNN hidden space into a private space for the supervised task or a shared space for both the supervised and unsupervised tasks. We present extensive experiments with the proposed framework on several long sequence modeling benchmark datasets. Results indicate that the proposed framework can yield performance gains in RNN models where long term dependencies are notoriously challenging to deal with.