Portrait de Yoshua Bengio

Yoshua Bengio

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur titulaire, Université de Montréal, Département d'informatique et de recherche opérationnelle
Fondateur et Conseiller scientifique, Équipe de direction
Sujets de recherche
Apprentissage automatique médical
Apprentissage de représentations
Apprentissage par renforcement
Apprentissage profond
Causalité
Modèles génératifs
Modèles probabilistes
Modélisation moléculaire
Neurosciences computationnelles
Raisonnement
Réseaux de neurones en graphes
Réseaux de neurones récurrents
Théorie de l'apprentissage automatique
Traitement du langage naturel

Biographie

*Pour toute demande média, veuillez écrire à medias@mila.quebec.

Pour plus d’information, contactez Marie-Josée Beauchamp, adjointe administrative à marie-josee.beauchamp@mila.quebec.

Reconnu comme une sommité mondiale en intelligence artificielle, Yoshua Bengio s’est surtout distingué par son rôle de pionnier en apprentissage profond, ce qui lui a valu le prix A. M. Turing 2018, le « prix Nobel de l’informatique », avec Geoffrey Hinton et Yann LeCun. Il est professeur titulaire à l’Université de Montréal, fondateur et conseiller scientifique de Mila – Institut québécois d’intelligence artificielle, et codirige en tant que senior fellow le programme Apprentissage automatique, apprentissage biologique de l'Institut canadien de recherches avancées (CIFAR). Il occupe également la fonction de conseiller spécial et directeur scientifique fondateur d’IVADO.

En 2018, il a été l’informaticien qui a recueilli le plus grand nombre de nouvelles citations au monde. En 2019, il s’est vu décerner le prestigieux prix Killam. Depuis 2022, il détient le plus grand facteur d’impact (h-index) en informatique à l’échelle mondiale. Il est fellow de la Royal Society de Londres et de la Société royale du Canada, et officier de l’Ordre du Canada.

Soucieux des répercussions sociales de l’IA et de l’objectif que l’IA bénéficie à tous, il a contribué activement à la Déclaration de Montréal pour un développement responsable de l’intelligence artificielle.

Étudiants actuels

Collaborateur·rice alumni - McGill
Collaborateur·rice alumni - UdeM
Collaborateur·rice de recherche - Cambridge University
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Visiteur de recherche indépendant
Co-superviseur⋅e :
Doctorat - UdeM
Visiteur de recherche indépendant
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - N/A
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Collaborateur·rice de recherche - KAIST
Collaborateur·rice alumni - UdeM
Collaborateur·rice alumni - UdeM
Co-superviseur⋅e :
Visiteur de recherche indépendant
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Doctorat - UdeM
Doctorat - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - UdeM
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - UdeM
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni
Collaborateur·rice alumni - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Collaborateur·rice alumni - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Visiteur de recherche indépendant - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - Ying Wu Coll of Computing
Collaborateur·rice de recherche - University of Waterloo
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - Max-Planck-Institute for Intelligent Systems
Collaborateur·rice de recherche - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Postdoctorat - UdeM
Visiteur de recherche indépendant - UdeM
Postdoctorat - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Visiteur de recherche indépendant
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - UdeM
Collaborateur·rice alumni - UdeM
Postdoctorat
Co-superviseur⋅e :
Visiteur de recherche indépendant - Technical University of Munich
Doctorat - UdeM
Co-superviseur⋅e :
Visiteur de recherche indépendant
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - UdeM
Postdoctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche
Collaborateur·rice de recherche - UdeM
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - McGill
Superviseur⋅e principal⋅e :

Publications

RL, but don’t do anything I wouldn’t do
Michael K. Cohen
Marcus Hutter
Stuart Russell
In reinforcement learning (RL), if the agent’s reward differs from the designers’ true utility, even only rarely, the state distribution… (voir plus) resulting from the agent’s policy can be very bad, in theory and in practice. When RL policies would devolve into undesired behavior, a common countermeasure is KL regularization to a trusted policy ("Don’t do anything I wouldn’t do"). All current cutting-edge language models are RL agents that are KL-regularized to a "base policy" that is purely predictive. Unfortunately, we demonstrate that when this base policy is a Bayesian predictive model of a trusted policy, the KL constraint is no longer reliable for controlling the behavior of an advanced RL agent. We demonstrate this theoretically using algorithmic information theory, and while systems today are too weak to exhibit this theorized failure precisely, we RL-finetune a language model and find evidence that our formal results are plausibly relevant in practice. We also propose a theoretical alternative that avoids this problem by replacing the "Don’t do anything I wouldn’t do" principle with "Don’t do anything I mightn’t do".
RL, but don't do anything I wouldn't do
Michael K. Cohen
Marcus Hutter
Stuart Russell
In reinforcement learning (RL), if the agent's reward differs from the designers' true utility, even only rarely, the state distribution res… (voir plus)ulting from the agent's policy can be very bad, in theory and in practice. When RL policies would devolve into undesired behavior, a common countermeasure is KL regularization to a trusted policy ("Don't do anything I wouldn't do"). All current cutting-edge language models are RL agents that are KL-regularized to a "base policy" that is purely predictive. Unfortunately, we demonstrate that when this base policy is a Bayesian predictive model of a trusted policy, the KL constraint is no longer reliable for controlling the behavior of an advanced RL agent. We demonstrate this theoretically using algorithmic information theory, and while systems today are too weak to exhibit this theorized failure precisely, we RL-finetune a language model and find evidence that our formal results are plausibly relevant in practice. We also propose a theoretical alternative that avoids this problem by replacing the "Don't do anything I wouldn't do" principle with "Don't do anything I mightn't do".
Can a Bayesian Oracle Prevent Harm from an Agent?
Is there a way to design powerful AI systems based on machine learning methods that would satisfy probabilistic safety guarantees? With the … (voir plus)long-term goal of obtaining a probabilistic guarantee that would apply in every context, we consider estimating a context-dependent bound on the probability of violating a given safety specification. Such a risk evaluation would need to be performed at run-time to provide a guardrail against dangerous actions of an AI. Noting that different plausible hypotheses about the world could produce very different outcomes, and because we do not know which one is right, we derive bounds on the safety violation probability predicted under the true but unknown hypothesis. Such bounds could be used to reject potentially dangerous actions. Our main results involve searching for cautious but plausible hypotheses, obtained by a maximization that involves Bayesian posteriors over hypotheses. We consider two forms of this result, in the i.i.d. case and in the non-i.i.d. case, and conclude with open problems towards turning such theoretical results into practical AI guardrails.
Discrete Feynman-Kac Correctors
The performance of Large Language Models (LLMs) directly depends on the size of the context that the model was trained on. Despite significa… (voir plus)nt progress in increasing the context size of the current models, some applications remain bottlenecked by the number of processed tokens at inference time. A particular mathematical problem LLMs can be used for is inferring parameters in a statistical model, given data-points as input. Here we make a case demonstrating that discrete diffusion models offer a promising avenue for scaling such parameter prediction tasks, by combining the outputs of the same model evaluated on different parts of the training data. We propose Discrete Fenyman-Kac Correctors --- a framework that allows for controlling the generated distribution of discrete masked diffusion models at inference time. We derive Sequential Monte Carlo (SMC) algorithms that, given a trained discrete diffusion model, sample from its annealed distribution or the product of distributions with different conditions. Notably, our framework does not require any training, finetuning and external reward functions. Finally, we apply our framework to amortized linear regression using LLaDA and demonstrate that it drastically outperforms the standard inference procedure in terms of accuracy and adherence to prompt format.
HVAC-GRACE: Transferable Building Control via Heterogeneous Graph Neural Network Policies
Buildings consume 40% of global energy, with HVAC systems responsible for up to half of that demand. As energy use grows, optimizing HVAC ef… (voir plus)ficiency is critical to meeting climate goals. While reinforcement learning (RL) offers a promising alternative to rule-based control, real-world adoption is limited by poor sample efficiency and generalisation. We introduce HVAC-GRACE, a graph-based RL framework that models buildings as heterogeneous graphs and integrates spatial message passing directly into temporal GRU gates. This enables each zone to learn control actions informed by both its own history and its structural context. Our architecture supports zero-shot transfer by learning topology-agnostic functions—but initial experiments reveal that this benefit depends on sufficient conditioned zone connectivity to maintain gradient flow. These findings highlight both the promise and the architectural requirements of scalable, transferable RL for building control
The Singapore Consensus on Global AI Safety Research Priorities
Luke Ong
Stuart Russell
Dawn Song
Max Tegmark
Lan Xue
Ya-Qin Zhang
Stephen Casper
Wan Sie Lee
Vanessa Wilfred
Vidhisha Balachandran
Fazl Barez
Michael Belinsky
Imane Bello
Malo Bourgon
Mark Brakel
Sim'eon Campos
Duncan Cass-Beggs … (voir 67 de plus)
Jiahao Chen
Rumman Chowdhury
Kuan Chua Seah
Jeff Clune
Juntao Dai
Agnès Delaborde
Francisco Eiras
Joshua Engels
Jinyu Fan
Adam Gleave
Noah D. Goodman
Fynn Heide
Johannes Heidecke
Dan Hendrycks
Cyrus Hodes
Bryan Low Kian Hsiang
Minlie Huang
Sami Jawhar
Jingyu Wang
Adam Tauman Kalai
Meindert Kamphuis
Mohan S. Kankanhalli
Subhash Kantamneni
Mathias Bonde Kirk
Thomas Kwa
Jeffrey Ladish
Kwok-Yan Lam
Wan Lee Sie
Taewhi Lee
Xiaojian Li
Jiajun Liu
Chaochao Lu
Yifan Mai
Richard Mallah
Julian Michael
Nick Moës
Simon Möller
Kihyuk Nam
Kwan Yee Ng
Mark Nitzberg
Besmira Nushi
Sean O hEigeartaigh
Alejandro Ortega
Pierre Peigné
James Petrie
Nayat Sanchez-Pi
Sarah Schwettmann
Buck Shlegeris
Saad Siddiqui
Aradhana Sinha
Martín Soto
Cheston Tan
Dong Ting
William-Chandra Tjhi
Robert Trager
Brian Tse
H. AnthonyTungK.
John Willes
Denise Wong
W. Xu
Rongwu Xu
Yi Zeng
HongJiang Zhang
Djordje Zikelic
Rapidly improving AI capabilities and autonomy hold significant promise of transformation, but are also driving vigorous debate on how to en… (voir plus)sure that AI is safe, i.e., trustworthy, reliable, and secure. Building a trusted ecosystem is therefore essential – it helps people embrace AI with confidence and gives maximal space for innovation while avoiding backlash. This requires policymakers, industry, researchers and the broader public to collectively work toward securing positive outcomes from AI’s development. AI safety research is a key dimension. Given that the state of science today for building trustworthy AI does not fully cover all risks, accelerated investment in research is required to keep pace with commercially driven growth in system capabilities. Goals: The 2025 Singapore Conference on AI (SCAI): International Scientific Exchange on AI Safety aims to support research in this important space by bringing together AI scientists across geographies to identify and synthesise research priorities in AI safety. The result, The Singapore Consensus on Global AI Safety Research Priorities, builds on the International AI Safety Report-A (IAISR) chaired by Yoshua Bengio and backed by 33 governments. By adopting a defence-in-depth model, this document organises AI safety research domains into three types: challenges with creating trustworthy AI systems (Development), challenges with evaluating their risks (Assessment), and challenges with monitoring and intervening after deployment (Control). Through the Singapore Consensus, we hope to globally facilitate meaningful conversations between AI scientists and AI policymakers for maximally beneficial outcomes. Our goal is to enable more impactful R&D efforts to rapidly develop safety and evaluation mechanisms and foster a trusted ecosystem where AI is harnessed for the public good.
The Singapore Consensus on Global AI Safety Research Priorities
Luke Ong
Stuart Russell
Dawn Song
Max Tegmark
Lan Xue
Ya-Qin Zhang
Stephen Casper
Wan Sie Lee
Vanessa Wilfred
Vidhisha Balachandran
Fazl Barez
Michael Belinsky
Imane Bello
Malo Bourgon
Mark Brakel
Sim'eon Campos
Duncan Cass-Beggs … (voir 67 de plus)
Jiahao Chen
Rumman Chowdhury
Kuan Chua Seah
Jeff Clune
Juntao Dai
Agnès Delaborde
Francisco Eiras
Joshua Engels
Jinyu Fan
Adam Gleave
Noah D. Goodman
Fynn Heide
Johannes Heidecke
Dan Hendrycks
Cyrus Hodes
Bryan Low Kian Hsiang
Minlie Huang
Sami Jawhar
Jingyu Wang
Adam Tauman Kalai
Meindert Kamphuis
Mohan S. Kankanhalli
Subhash Kantamneni
Mathias Bonde Kirk
Thomas Kwa
Jeffrey Ladish
Kwok-Yan Lam
Wan Lee Sie
Taewhi Lee
Xiaojian Li
Jiajun Liu
Chaochao Lu
Yifan Mai
Richard Mallah
Julian Michael
Nick Moës
Simon Möller
Kihyuk Nam
Kwan Yee Ng
Mark Nitzberg
Besmira Nushi
Sean O hEigeartaigh
Alejandro Ortega
Pierre Peigné
James Petrie
Nayat Sanchez-Pi
Sarah Schwettmann
Buck Shlegeris
Saad Siddiqui
Aradhana Sinha
Martín Soto
Cheston Tan
Dong Ting
William-Chandra Tjhi
Robert Trager
Brian Tse
H. AnthonyTungK.
John Willes
Denise Wong
W. Xu
Rongwu Xu
Yi Zeng
HongJiang Zhang
Djordje Zikelic
Rapidly improving AI capabilities and autonomy hold significant promise of transformation, but are also driving vigorous debate on how to en… (voir plus)sure that AI is safe, i.e., trustworthy, reliable, and secure. Building a trusted ecosystem is therefore essential – it helps people embrace AI with confidence and gives maximal space for innovation while avoiding backlash. This requires policymakers, industry, researchers and the broader public to collectively work toward securing positive outcomes from AI’s development. AI safety research is a key dimension. Given that the state of science today for building trustworthy AI does not fully cover all risks, accelerated investment in research is required to keep pace with commercially driven growth in system capabilities. Goals: The 2025 Singapore Conference on AI (SCAI): International Scientific Exchange on AI Safety aims to support research in this important space by bringing together AI scientists across geographies to identify and synthesise research priorities in AI safety. The result, The Singapore Consensus on Global AI Safety Research Priorities, builds on the International AI Safety Report-A (IAISR) chaired by Yoshua Bengio and backed by 33 governments. By adopting a defence-in-depth model, this document organises AI safety research domains into three types: challenges with creating trustworthy AI systems (Development), challenges with evaluating their risks (Assessment), and challenges with monitoring and intervening after deployment (Control). Through the Singapore Consensus, we hope to globally facilitate meaningful conversations between AI scientists and AI policymakers for maximally beneficial outcomes. Our goal is to enable more impactful R&D efforts to rapidly develop safety and evaluation mechanisms and foster a trusted ecosystem where AI is harnessed for the public good.
The Singapore Consensus on Global AI Safety Research Priorities
Luke Ong
Stuart Russell
Dawn Song
Max Tegmark
Lan Xue
Ya-Qin Zhang
Stephen Casper
Wan Sie Lee
Vanessa Wilfred
Vidhisha Balachandran
Fazl Barez
Michael Belinsky
Imane Bello
Malo Bourgon
Mark Brakel
Sim'eon Campos
Duncan Cass-Beggs … (voir 67 de plus)
Jiahao Chen
Rumman Chowdhury
Kuan Chua Seah
Jeff Clune
Juntao Dai
Agnès Delaborde
Francisco Eiras
Joshua Engels
Jinyu Fan
Adam Gleave
Noah D. Goodman
Fynn Heide
Johannes Heidecke
Dan Hendrycks
Cyrus Hodes
Bryan Low Kian Hsiang
Minlie Huang
Sami Jawhar
Jingyu Wang
Adam Tauman Kalai
Meindert Kamphuis
Mohan S. Kankanhalli
Subhash Kantamneni
Mathias Bonde Kirk
Thomas Kwa
Jeffrey Ladish
Kwok-Yan Lam
Wan Lee Sie
Taewhi Lee
Xiaojian Li
Jiajun Liu
Chaochao Lu
Yifan Mai
Richard Mallah
Julian Michael
Nick Moës
Simon Möller
Kihyuk Nam
Kwan Yee Ng
Mark Nitzberg
Besmira Nushi
Sean O hEigeartaigh
Alejandro Ortega
Pierre Peigné
James Petrie
Nayat Sanchez-Pi
Sarah Schwettmann
Buck Shlegeris
Saad Siddiqui
Aradhana Sinha
Martín Soto
Cheston Tan
Dong Ting
William-Chandra Tjhi
Robert Trager
Brian Tse
H. AnthonyTungK.
John Willes
Denise Wong
W. Xu
Rongwu Xu
Yi Zeng
HongJiang Zhang
Djordje Zikelic
Rapidly improving AI capabilities and autonomy hold significant promise of transformation, but are also driving vigorous debate on how to en… (voir plus)sure that AI is safe, i.e., trustworthy, reliable, and secure. Building a trusted ecosystem is therefore essential – it helps people embrace AI with confidence and gives maximal space for innovation while avoiding backlash. This requires policymakers, industry, researchers and the broader public to collectively work toward securing positive outcomes from AI’s development. AI safety research is a key dimension. Given that the state of science today for building trustworthy AI does not fully cover all risks, accelerated investment in research is required to keep pace with commercially driven growth in system capabilities. Goals: The 2025 Singapore Conference on AI (SCAI): International Scientific Exchange on AI Safety aims to support research in this important space by bringing together AI scientists across geographies to identify and synthesise research priorities in AI safety. The result, The Singapore Consensus on Global AI Safety Research Priorities, builds on the International AI Safety Report-A (IAISR) chaired by Yoshua Bengio and backed by 33 governments. By adopting a defence-in-depth model, this document organises AI safety research domains into three types: challenges with creating trustworthy AI systems (Development), challenges with evaluating their risks (Assessment), and challenges with monitoring and intervening after deployment (Control). Through the Singapore Consensus, we hope to globally facilitate meaningful conversations between AI scientists and AI policymakers for maximally beneficial outcomes. Our goal is to enable more impactful R&D efforts to rapidly develop safety and evaluation mechanisms and foster a trusted ecosystem where AI is harnessed for the public good.
Fast Monte Carlo Tree Diffusion: 100x Speedup via Parallel Sparse Planning
Jaesik Yoon
Hyeonseo Cho
Diffusion models have recently emerged as a powerful approach for trajectory planning. However, their inherently non-sequential nature limit… (voir plus)s their effectiveness in long-horizon reasoning tasks at test time. The recently proposed Monte Carlo Tree Diffusion (MCTD) offers a promising solution by combining diffusion with tree-based search, achieving state-of-the-art performance on complex planning problems. Despite its strengths, our analysis shows that MCTD incurs substantial computational overhead due to the sequential nature of tree search and the cost of iterative denoising. To address this, we propose Fast-MCTD, a more efficient variant that preserves the strengths of MCTD while significantly improving its speed and scalability. Fast-MCTD integrates two techniques: Parallel MCTD, which enables parallel rollouts via delayed tree updates and redundancy-aware selection; and Sparse MCTD, which reduces rollout length through trajectory coarsening. Experiments show that Fast-MCTD achieves up to 100x speedup over standard MCTD while maintaining or improving planning performance. Remarkably, it even outperforms Diffuser in inference speed on some tasks, despite Diffuser requiring no search and yielding weaker solutions. These results position Fast-MCTD as a practical and scalable solution for diffusion-based inference-time reasoning.
Fast Monte Carlo Tree Diffusion: 100x Speedup via Parallel Sparse Planning
Jaesik Yoon
Hyeonseo Cho
Diffusion models have recently emerged as a powerful approach for trajectory planning. However, their inherently non-sequential nature limit… (voir plus)s their effectiveness in long-horizon reasoning tasks at test time. The recently proposed Monte Carlo Tree Diffusion (MCTD) offers a promising solution by combining diffusion with tree-based search, achieving state-of-the-art performance on complex planning problems. Despite its strengths, our analysis shows that MCTD incurs substantial computational overhead due to the sequential nature of tree search and the cost of iterative denoising. To address this, we propose Fast-MCTD, a more efficient variant that preserves the strengths of MCTD while significantly improving its speed and scalability. Fast-MCTD integrates two techniques: Parallel MCTD, which enables parallel rollouts via delayed tree updates and redundancy-aware selection; and Sparse MCTD, which reduces rollout length through trajectory coarsening. Experiments show that Fast-MCTD achieves up to 100x speedup over standard MCTD while maintaining or improving planning performance. Remarkably, it even outperforms Diffuser in inference speed on some tasks, despite Diffuser requiring no search and yielding weaker solutions. These results position Fast-MCTD as a practical and scalable solution for diffusion-based inference-time reasoning.
Fast Monte Carlo Tree Diffusion: 100x Speedup via Parallel Sparse Planning
Jaesik Yoon
Hyeonseo Cho
Diffusion models have recently emerged as a powerful approach for trajectory planning. However, their inherently non-sequential nature limit… (voir plus)s their effectiveness in long-horizon reasoning tasks at test time. The recently proposed Monte Carlo Tree Diffusion (MCTD) offers a promising solution by combining diffusion with tree-based search, achieving state-of-the-art performance on complex planning problems. Despite its strengths, our analysis shows that MCTD incurs substantial computational overhead due to the sequential nature of tree search and the cost of iterative denoising. To address this, we propose Fast-MCTD, a more efficient variant that preserves the strengths of MCTD while significantly improving its speed and scalability. Fast-MCTD integrates two techniques: Parallel MCTD, which enables parallel rollouts via delayed tree updates and redundancy-aware selection; and Sparse MCTD, which reduces rollout length through trajectory coarsening. Experiments show that Fast-MCTD achieves up to 100x speedup over standard MCTD while maintaining or improving planning performance. Remarkably, it even outperforms Diffuser in inference speed on some tasks, despite Diffuser requiring no search and yielding weaker solutions. These results position Fast-MCTD as a practical and scalable solution for diffusion-based inference-time reasoning.
FORT: Forward-Only Regression Training of Normalizing Flows
Simulation-free training frameworks have been at the forefront of the generative modelling revolution in continuous spaces, leading to neura… (voir plus)l dynamical systems that encompass modern large-scale diffusion and flow matching models. Despite the scalability of training, the generation of high-quality samples and their corresponding likelihood under the model requires expensive numerical simulation -- inhibiting adoption in numerous scientific applications such as equilibrium sampling of molecular systems. In this paper, we revisit classical normalizing flows as one-step generative models with exact likelihoods and propose a novel, scalable training objective that does not require computing the expensive change of variable formula used in conventional maximum likelihood training. We propose Forward-Only Regression Training (FORT), a simple