Portrait of Bang Liu

Bang Liu

Associate Academic Member
Canada CIFAR AI Chair
Assistant Professor, Université de Montréal, Department of Computer Science and Operations Research
Research Topics
Data Mining
Deep Learning
Generative Models
Learning on Graphs
Natural Language Processing

Biography

Bang Liu is an assistant professor in the Department of Computer Science and Operations Research (DIRO), and a core member of the Applied Research in Computational Linguistics Lab (RALI) at Université de Montréal. He is also an associate academic member of Mila – Quebec Artificial Intelligence Institute and a Canada CIFAR AI Chair.

Liu received his BEng from the University of Science and Technology of China in 2013, and his MSc and PhD degrees from the University of Alberta in 2015 and 2020, respectively. His research interests lie primarily in the areas of natural language processing, multimodal and embodied learning, theory and techniques for AGI (e.g., understanding and improving large language models), and AI for science (e.g., health, material science, XR).

Current Students

PhD - Université de Montréal
Master's Research - Université de Montréal
Master's Research - Université de Montréal
Master's Research - Université de Montréal
Master's Research - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Master's Research - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Master's Research - Université de Montréal

Publications

VCR: Visual Caption Restoration
Tianyu Zhang
Suyuchen Wang
Lu Li
Ge Zhang
Perouz Taslakian
Sai Rajeswar
Jie Fu
We introduce Visual Caption Restoration (VCR), a novel vision-language task that challenges models to accurately restore partially obscured … (see more)texts using pixel-level hints within images. This task stems from the observation that text embedded in images is intrinsically different from common visual elements and natural language due to the need to align the modalities of vision, text, and text embedded in images. While numerous works have integrated text embedded in images into visual question-answering tasks, approaches to these tasks generally rely on optical character recognition or masked language modeling, thus reducing the task to mainly text-based processing. However, text-based processing becomes ineffective in VCR as accurate text restoration depends on the combined information from provided images, context, and subtle cues from the tiny exposed areas of masked texts. We develop a pipeline to generate synthetic images for the VCR task using image-caption pairs, with adjustable caption visibility to control the task difficulty. With this pipeline, we construct a dataset for VCR called VCR-Wiki using images with captions from Wikipedia, comprising 2.11M English and 346K Chinese entities in both easy and hard split variants. Our results reveal that current vision language models significantly lag behind human performance in the VCR task, and merely fine-tuning the models on our dataset does not lead to notable improvements. We release VCR-Wiki and the data construction code to facilitate future research.
HoneyComb: A Flexible LLM-Based Agent System for Materials Science
Huan Zhang
Yu Song
Ziyu Hou
Santiago Miret
The emergence of specialized large language models (LLMs) has shown promise in addressing complex tasks in materials science. Many LLMs, how… (see more)ever, often struggle with the distinct complexities of materials science tasks, such as computational challenges, and rely heavily on outdated implicit knowledge, leading to inaccuracies and hallucinations. To address these challenges, we introduce HoneyComb, the first LLM-based agent system specifically designed for materials science. HoneyComb leverages a reliable, high-quality materials science knowledge base (MatSciKB) and a sophisticated tool hub (ToolHub) tailored specifically for materials science to enhance its reasoning and computational capabilities. MatSciKB is a curated, structured knowledge collection based on reliable literature, while ToolHub employs an Inductive Tool Construction method to generate, decompose, and refine API tools for materials science. Additionally, HoneyComb leverages a retriever module that adaptively selects the appropriate knowledge source or tools for specific tasks, thereby ensuring accuracy and relevance. Our results demonstrate that HoneyComb significantly outperforms baseline models across various tasks in materials science, effectively bridging the gap between current LLM capabilities and the specialized needs of this domain. Furthermore, our adaptable framework can be easily extended to other scientific domains, highlighting its potential for broad applicability in advancing scientific research and applications.
MatExpert: Decomposing Materials Discovery By Mimicking Human Experts
Qianggang Ding
Santiago Miret
T2VIndexer: A Generative Video Indexer for Efficient Text-Video Retrieval
Yili Li
Jing Yu
Keke Gai
Gang Xiong
Qi Wu
Current text-video retrieval methods mainly rely on cross-modal matching between queries and videos to calculate their similarity scores, wh… (see more)ich are then sorted to obtain retrieval results. This method considers the matching between each candidate video and the query, but it incurs a significant time cost and will increase notably with the increase of candidates. Generative models are common in natural language processing and computer vision, and have been successfully applied in document retrieval, but their application in multimodal retrieval remains unexplored. To enhance retrieval efficiency, in this paper, we introduce a model-based video indexer named T2VIndexer, which is a sequence-to-sequence generative model directly generating video identifiers and retrieving candidate videos with constant time complexity. T2VIndexer aims to reduce retrieval time while maintaining high accuracy. To achieve this goal, we propose video identifier encoding and query-identifier augmentation approaches to represent videos as short sequences while preserving their semantic information. Our method consistently enhances the retrieval efficiency of current state-of-the-art models on four standard datasets. It enables baselines with only 30%-50% of the original retrieval time to achieve better retrieval performance on MSR-VTT (+1.0%), MSVD (+1.8%), ActivityNet (+1.5%), and DiDeMo (+0.2%). The code is available at https://anonymous.4open.science/r/T2VIndexer-40BE.
EiG-Search: Generating Edge-Induced Subgraphs for GNN Explanation in Linear Time
Shengyao Lu
Keith G Mills
Jiao He
Di Niu
GOAt: Explaining Graph Neural Networks via Graph Output Attribution
Shengyao Lu
Keith G Mills
Jiao He
Di Niu
Understanding the decision-making process of Graph Neural Networks (GNNs) is crucial to their interpretability. Most existing methods for ex… (see more)plaining GNNs typically rely on training auxiliary models, resulting in the explanations remain black-boxed. This paper introduces Graph Output Attribution (GOAt), a novel method to attribute graph outputs to input graph features, creating GNN explanations that are faithful, discriminative, as well as stable across similar samples. By expanding the GNN as a sum of scalar products involving node features, edge features and activation patterns, we propose an efficient analytical method to compute contribution of each node or edge feature to each scalar product and aggregate the contributions from all scalar products in the expansion form to derive the importance of each node and edge. Through extensive experiments on synthetic and real-world data, we show that our method not only outperforms various state-of-the-art GNN explainers in terms of the commonly used fidelity metric, but also exhibits stronger discriminability, and stability by a remarkable margin.
Efficient Classification of Long Documents via State-Space Models
Peng Lu
Suyuchen Wang
Mehdi Rezagholizadeh
Ivan Kobyzev
HoneyBee: Progressive Instruction Finetuning of Large Language Models for Materials Science
Yu Song
Santiago Miret
Huan Zhang
MAPO: Boosting Large Language Model Performance with Model-Adaptive Prompt Optimization
Yuyan Chen
Zhihao Wen
Ge Fan
Zhengyu Chen
Wei Wu
Dayiheng Liu
Zhixu Li
Yanghua Xiao
SkillQG: Learning to Generate Question for Reading Comprehension Assessment
Xiaoqiang Wang
Siliang Tang
Lingfei Wu
MatSci-NLP: Evaluating Scientific Language Models on Materials Science Language Tasks Using Text-to-Schema Modeling
Yurun Song
Santiago Miret
Fine-tuning Happens in Tiny Subspaces: Exploring Intrinsic Task-specific Subspaces of Pre-trained Language Models
Zhong Zhang
Junming Shao