Portrait de Yoshua Bengio

Yoshua Bengio

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur titulaire, Université de Montréal, Département d'informatique et de recherche opérationnelle
Directeur scientifique, Équipe de direction
Sujets de recherche
Apprentissage automatique médical
Apprentissage de représentations
Apprentissage par renforcement
Apprentissage profond
Causalité
Modèles génératifs
Modèles probabilistes
Modélisation moléculaire
Neurosciences computationnelles
Raisonnement
Réseaux de neurones en graphes
Réseaux de neurones récurrents
Théorie de l'apprentissage automatique
Traitement du langage naturel

Biographie

*Pour toute demande média, veuillez écrire à medias@mila.quebec.

Pour plus d’information, contactez Marie-Josée Beauchamp, adjointe administrative à marie-josee.beauchamp@mila.quebec.

Reconnu comme une sommité mondiale en intelligence artificielle, Yoshua Bengio s’est surtout distingué par son rôle de pionnier en apprentissage profond, ce qui lui a valu le prix A. M. Turing 2018, le « prix Nobel de l’informatique », avec Geoffrey Hinton et Yann LeCun. Il est professeur titulaire à l’Université de Montréal, fondateur et directeur scientifique de Mila – Institut québécois d’intelligence artificielle, et codirige en tant que senior fellow le programme Apprentissage automatique, apprentissage biologique de l'Institut canadien de recherches avancées (CIFAR). Il occupe également la fonction de directeur scientifique d’IVADO.

En 2018, il a été l’informaticien qui a recueilli le plus grand nombre de nouvelles citations au monde. En 2019, il s’est vu décerner le prestigieux prix Killam. Depuis 2022, il détient le plus grand facteur d’impact (h-index) en informatique à l’échelle mondiale. Il est fellow de la Royal Society de Londres et de la Société royale du Canada, et officier de l’Ordre du Canada.

Soucieux des répercussions sociales de l’IA et de l’objectif que l’IA bénéficie à tous, il a contribué activement à la Déclaration de Montréal pour un développement responsable de l’intelligence artificielle.

Étudiants actuels

Stagiaire de recherche - McGill
Stagiaire de recherche - UdeM
Stagiaire de recherche - UdeM
Doctorat - UdeM
Stagiaire de recherche - Université du Québec à Rimouski
Visiteur de recherche indépendant
Doctorat - UdeM
Collaborateur·rice alumni - UQAR
Collaborateur·rice de recherche - N/A
Doctorat - UdeM
Collaborateur·rice de recherche - KAIST
Stagiaire de recherche - UdeM
Doctorat - UdeM
Doctorat - Massachusetts Institute of Technology
Doctorat - UdeM
Stagiaire de recherche - Barcelona University
Stagiaire de recherche - UdeM
Stagiaire de recherche - UdeM
Stagiaire de recherche
Doctorat - UdeM
Maîtrise recherche - UdeM
Stagiaire de recherche - UdeM
Collaborateur·rice de recherche - UdeM
Collaborateur·rice alumni - UdeM
Collaborateur·rice alumni - UdeM
Collaborateur·rice alumni
Doctorat - UdeM
Stagiaire de recherche - Imperial College London
Doctorat - UdeM
Stagiaire de recherche - UdeM
Collaborateur·rice alumni - UdeM
Doctorat - UdeM
Collaborateur·rice de recherche - UdeM
Visiteur de recherche indépendant - UdeM
Collaborateur·rice de recherche - Ying Wu Coll of Computing
Doctorat - University of Waterloo
Collaborateur·rice alumni - Max-Planck-Institute for Intelligent Systems
Doctorat - UdeM
Postdoctorat - UdeM
Visiteur de recherche indépendant - UdeM
Collaborateur·rice alumni - UdeM
Maîtrise recherche - UdeM
Collaborateur·rice alumni - UdeM
Stagiaire de recherche - UdeM
Maîtrise recherche - UdeM
Collaborateur·rice alumni
Visiteur de recherche indépendant - Technical University of Munich
Doctorat - École Polytechnique Fédérale de Lausanne
Postdoctorat - Polytechnique
Collaborateur·rice de recherche - RWTH Aachen University (Rheinisch-Westfälische Technische Hochschule Aachen)
Postdoctorat - UdeM
Doctorat - UdeM
Collaborateur·rice alumni - UdeM
Collaborateur·rice de recherche
Co-superviseur⋅e :
Collaborateur·rice de recherche - KAIST
Doctorat - UdeM
Doctorat - McGill
Doctorat - McGill
Superviseur⋅e principal⋅e :

Publications

Adaptive teachers for amortized samplers
Minsu Kim
Sanghyeok Choi
Taeyoung Yun
Emmanuel Bengio
Leo Feng
Jarrid Rector-Brooks
Sungsoo Ahn
Jinkyoo Park
Nikolay Malkin
Amortized inference is the task of training a parametric model, such as a neural network, to approximate a distribution with a given unnorma… (voir plus)lized density where exact sampling is intractable. When sampling is implemented as a sequential decision-making process, reinforcement learning (RL) methods, such as generative flow networks, can be used to train the sampling policy. Off-policy RL training facilitates the discovery of diverse, high-reward candidates, but existing methods still face challenges in efficient exploration. We propose to use an adaptive training distribution (the Teacher) to guide the training of the primary amortized sampler (the Student) by prioritizing high-loss regions. The Teacher, an auxiliary behavior model, is trained to sample high-error regions of the Student and can generalize across unexplored modes, thereby enhancing mode coverage by providing an efficient training curriculum. We validate the effectiveness of this approach in a synthetic environment designed to present an exploration challenge, two diffusion-based sampling tasks, and four biochemical discovery tasks demonstrating its ability to improve sample efficiency and mode coverage.
Geometric Signatures of Compositionality Across a Language Model's Lifetime
Jin Hwa Lee
Thomas Jiralerspong
Lei Yu
Emily Cheng
Compositionality, the notion that the meaning of an expression is constructed from the meaning of its parts and syntactic rules, permits the… (voir plus) infinite productivity of human language. For the first time, artificial language models (LMs) are able to match human performance in a number of compositional generalization tasks. However, much remains to be understood about the representational mechanisms underlying these abilities. We take a high-level geometric approach to this problem by relating the degree of compositionality in a dataset to the intrinsic dimensionality of its representations under an LM, a measure of feature complexity. We find not only that the degree of dataset compositionality is reflected in representations' intrinsic dimensionality, but that the relationship between compositionality and geometric complexity arises due to learned linguistic features over training. Finally, our analyses reveal a striking contrast between linear and nonlinear dimensionality, showing that they respectively encode formal and semantic aspects of linguistic composition.
HarmAug: Effective Data Augmentation for Knowledge Distillation of Safety Guard Models
Seanie Lee
Haebin Seong
Dong Bok Lee
Minki Kang
Xiaoyin Chen
Dominik Wagner
Juho Lee
Sung Ju Hwang
Safety guard models that detect malicious queries aimed at large language models (LLMs) are essential for ensuring the secure and responsibl… (voir plus)e deployment of LLMs in real-world applications. However, deploying existing safety guard models with billions of parameters alongside LLMs on mobile devices is impractical due to substantial memory requirements and latency. To reduce this cost, we distill a large teacher safety guard model into a smaller one using a labeled dataset of instruction-response pairs with binary harmfulness labels. Due to the limited diversity of harmful instructions in the existing labeled dataset, naively distilled models tend to underperform compared to larger models. To bridge the gap between small and large models, we propose HarmAug, a simple yet effective data augmentation method that involves jailbreaking an LLM and prompting it to generate harmful instructions. Given a prompt such as,"Make a single harmful instruction prompt that would elicit offensive content", we add an affirmative prefix (e.g.,"I have an idea for a prompt:") to the LLM's response. This encourages the LLM to continue generating the rest of the response, leading to sampling harmful instructions. Another LLM generates a response to the harmful instruction, and the teacher model labels the instruction-response pair. We empirically show that our HarmAug outperforms other relevant baselines. Moreover, a 435-million-parameter safety guard model trained with HarmAug achieves an F1 score comparable to larger models with over 7 billion parameters, and even outperforms them in AUPRC, while operating at less than 25% of their computational cost.
Were RNNs All We Needed?
Leo Feng
Frederick Tung
Mohamed Osama Ahmed
Hossein Hajimirsadeghi
A Data-driven Discovery of the Causal Connection between Galaxy and Black Hole Evolution
Zehao Jin
Mario Pasquato
Benjamin L. Davis
Tristan Deleu
Yu Luo
Changhyun Cho
Pablo Lemos
Xi Kang
Andrea Maccio
MAP: Model Merging with Amortized Pareto Front Using Limited Computation
Lu Li
Tianyu Zhang
Zhiqi Bu
Suyuchen Wang
Huan He
Jie Fu
Yonghui Wu
Jiang Bian
Yong Chen
Amortizing intractable inference in diffusion models for vision, language, and control
Siddarth Venkatraman
Moksh J. Jain
Luca Scimeca
Minsu Kim
Marcin Sendera
Mohsin Hasan
Luke Rowe
Sarthak Mittal
Pablo Lemos
Emmanuel Bengio
Alexandre Adam
Jarrid Rector-Brooks
Nikolay Malkin
Diffusion models have emerged as effective distribution estimators in vision, language, and reinforcement learning, but their use as priors … (voir plus)in downstream tasks poses an intractable posterior inference problem. This paper studies amortized sampling of the posterior over data,
Improved off-policy training of diffusion samplers
Marcin Sendera
Minsu Kim
Sarthak Mittal
Pablo Lemos
Luca Scimeca
Jarrid Rector-Brooks
Alexandre Adam
Nikolay Malkin
We study the problem of training diffusion models to sample from a distribution with a given unnormalized density or energy function. We ben… (voir plus)chmark several diffusion-structured inference methods, including simulation-based variational approaches and off-policy methods (continuous generative flow networks). Our results shed light on the relative advantages of existing algorithms while bringing into question some claims from past work. We also propose a novel exploration strategy for off-policy methods, based on local search in the target space with the use of a replay buffer, and show that it improves the quality of samples on a variety of target distributions. Our code for the sampling methods and benchmarks studied is made public at [this link](https://github.com/GFNOrg/gfn-diffusion) as a base for future work on diffusion models for amortized inference.
Metacognitive Capabilities of LLMs: An Exploration in Mathematical Problem Solving
Aniket Rajiv Didolkar
Anirudh Goyal
Nan Rosemary Ke
Siyuan Guo
Michal Valko
Timothy P Lillicrap
Danilo Jimenez Rezende
Michael Curtis Mozer
Sanjeev Arora
RGFN: Synthesizable Molecular Generation Using GFlowNets
Michał Koziarski
Andrei Rekesh
Dmytro Shevchuk
Almer M. van der Sloot
Piotr Gaiński
Cheng-Hao Liu
Mike Tyers
Robert A. Batey
Trajectory Flow Matching with Applications to Clinical Time Series Modelling
Xi Zhang
Yuan Pu
Yuki Kawamura
Andrew Loza
Dennis Shung
Alexander Tong
Modeling stochastic and irregularly sampled time series is a challenging problem found in a wide range of applications, especially in medici… (voir plus)ne. Neural stochastic differential equations (Neural SDEs) are an attractive modeling technique for this problem, which parameterize the drift and diffusion terms of an SDE with neural networks. However, current algorithms for training Neural SDEs require backpropagation through the SDE dynamics, greatly limiting their scalability and stability. To address this, we propose **Trajectory Flow Matching** (TFM), which trains a Neural SDE in a *simulation-free* manner, bypassing backpropagation through the dynamics. TFM leverages the flow matching technique from generative modeling to model time series. In this work we first establish necessary conditions for TFM to learn time series data. Next, we present a reparameterization trick which improves training stability. Finally, we adapt TFM to the clinical time series setting, demonstrating improved performance on three clinical time series datasets both in terms of absolute performance and uncertainty prediction.
A neuronal least-action principle for real-time learning in cortical circuits
Walter Senn
Dominik Dold
Akos F. Kungl
Benjamin Ellenberger
Jakob Jordan
João Sacramento
Mihai A. Petrovici
One of the most fundamental laws of physics is the principle of least action. Motivated by its predictive power, we introduce a neuronal lea… (voir plus)st-action principle for cortical processing of sensory streams to produce appropriate behavioural outputs in real time. The principle postulates that the voltage dynamics of cortical pyramidal neurons prospectively minimize the local somato-dendritic mismatch error within individual neurons. For motor output neurons, it implies minimizing an instantaneous behavioural error. For deep network neurons, it implies a prospective firing to overcome integration delays and correct for possible output errors right in time. The neuron-specific errors are extracted in the apical dendrites of pyramidal neurons through a cortical microcircuit that tries to explain away the feedback from the periphery, and correct the trajectory on the fly. Any motor output is in a moving equilibrium with the sensory inputs and the motor feedback during the whole sensory-motor trajectory. Ongoing synaptic plasticity reduces the somato-dendritic mismatch error within each cortical neuron and performs gradient descent on the output cost at any moment in time. The neuronal least-action principle offers an axiomatic framework to derive local neuronal and synaptic dynamics for global real-time computation and learning in the brain and in physical substrates in general.