Portrait de Yoshua Bengio

Yoshua Bengio

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur titulaire, Université de Montréal, Département d'informatique et de recherche opérationnelle
Directeur scientifique, Équipe de direction
Sujets de recherche
Apprentissage automatique médical
Apprentissage de représentations
Apprentissage par renforcement
Apprentissage profond
Causalité
Modèles génératifs
Modèles probabilistes
Modélisation moléculaire
Neurosciences computationnelles
Raisonnement
Réseaux de neurones en graphes
Réseaux de neurones récurrents
Théorie de l'apprentissage automatique
Traitement du langage naturel

Biographie

*Pour toute demande média, veuillez écrire à medias@mila.quebec.

Pour plus d’information, contactez Marie-Josée Beauchamp, adjointe administrative à marie-josee.beauchamp@mila.quebec.

Reconnu comme une sommité mondiale en intelligence artificielle, Yoshua Bengio s’est surtout distingué par son rôle de pionnier en apprentissage profond, ce qui lui a valu le prix A. M. Turing 2018, le « prix Nobel de l’informatique », avec Geoffrey Hinton et Yann LeCun. Il est professeur titulaire à l’Université de Montréal, fondateur et directeur scientifique de Mila – Institut québécois d’intelligence artificielle, et codirige en tant que senior fellow le programme Apprentissage automatique, apprentissage biologique de l'Institut canadien de recherches avancées (CIFAR). Il occupe également la fonction de directeur scientifique d’IVADO.

En 2018, il a été l’informaticien qui a recueilli le plus grand nombre de nouvelles citations au monde. En 2019, il s’est vu décerner le prestigieux prix Killam. Depuis 2022, il détient le plus grand facteur d’impact (h-index) en informatique à l’échelle mondiale. Il est fellow de la Royal Society de Londres et de la Société royale du Canada, et officier de l’Ordre du Canada.

Soucieux des répercussions sociales de l’IA et de l’objectif que l’IA bénéficie à tous, il a contribué activement à la Déclaration de Montréal pour un développement responsable de l’intelligence artificielle.

Étudiants actuels

Collaborateur·rice alumni - McGill
Collaborateur·rice alumni - UdeM
Stagiaire de recherche - UdeM
Doctorat - UdeM
Collaborateur·rice alumni - Université du Québec à Rimouski
Visiteur de recherche indépendant
Co-superviseur⋅e :
Doctorat - UdeM
Collaborateur·rice alumni - UQAR
Collaborateur·rice de recherche - N/A
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Collaborateur·rice de recherche - KAIST
Collaborateur·rice alumni - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Doctorat - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Stagiaire de recherche - Barcelona University
Stagiaire de recherche - UdeM
Stagiaire de recherche - UdeM
Stagiaire de recherche
Postdoctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Maîtrise recherche - UdeM
Co-superviseur⋅e :
Collaborateur·rice alumni - UdeM
Collaborateur·rice de recherche - UdeM
Collaborateur·rice alumni - UdeM
Collaborateur·rice alumni - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni
Collaborateur·rice alumni - Imperial College London
Doctorat - UdeM
Collaborateur·rice alumni - UdeM
Collaborateur·rice alumni - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Collaborateur·rice de recherche - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Visiteur de recherche indépendant - UdeM
Collaborateur·rice de recherche - Ying Wu Coll of Computing
Doctorat - University of Waterloo
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - Max-Planck-Institute for Intelligent Systems
Doctorat - UdeM
Postdoctorat - UdeM
Visiteur de recherche indépendant - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - UdeM
Maîtrise recherche - UdeM
Collaborateur·rice alumni - UdeM
Stagiaire de recherche - UdeM
Maîtrise recherche - UdeM
Collaborateur·rice alumni
Visiteur de recherche indépendant - Technical University of Munich
Postdoctorat - Polytechnique
Co-superviseur⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Collaborateur·rice de recherche - RWTH Aachen University (Rheinisch-Westfälische Technische Hochschule Aachen)
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Collaborateur·rice alumni - UdeM
Collaborateur·rice de recherche
Collaborateur·rice de recherche - KAIST
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :

Publications

A community effort in SARS-CoV-2 drug discovery.
Johannes Schimunek
Philipp Seidl
Katarina Elez
Tim Hempel
Tuan Le
Frank Noé
Simon Olsson
Lluís Raich
Robin Winter
Hatice Gokcan
Filipp Gusev
Evgeny M. Gutkin
Olexandr Isayev
Maria G. Kurnikova
Chamali H. Narangoda
Roman Zubatyuk
Ivan P. Bosko
Konstantin V. Furs
Anna D. Karpenko
Yury V. Kornoushenko … (voir 133 de plus)
Mikita Shuldau
Artsemi Yushkevich
Mohammed B. Benabderrahmane
Patrick Bousquet‐Melou
Ronan Bureau
Beatrice Charton
Bertrand C. Cirou
Gérard Gil
William J. Allen
Suman Sirimulla
Stanley Watowich
Nick Antonopoulos
Nikolaos Epitropakis
Agamemnon Krasoulis
Vassilis Pitsikalis
Stavros Theodorakis
Igor Kozlovskii
Anton Maliutin
Alexander Medvedev
Petr Popov
Mark Zaretckii
Hamid Eghbal‐Zadeh
Christina Halmich
Sepp Hochreiter
Andreas Mayr
Peter Ruch
Michael Widrich
Francois Berenger
Ashutosh Kumar
Yoshihiro Yamanishi
Kam Y. J. Zhang
Emmanuel Bengio
Moksh J. Jain
Maksym Korablyov
Cheng-Hao Liu
Gilles Marcou
Marcous Gilles
Enrico Glaab
Kelly Barnsley
Suhasini M. Iyengar
Mary Jo Ondrechen
V. Joachim Haupt
Florian Kaiser
Michael Schroeder
Luisa Pugliese
Simone Albani
Christina Athanasiou
Andrea Beccari
Paolo Carloni
Giulia D'Arrigo
Eleonora Gianquinto
Jonas Goßen
Anton Hanke
Benjamin P. Joseph
Daria B. Kokh
Sandra Kovachka
Candida Manelfi
Goutam Mukherjee
Abraham Muñiz‐Chicharro
Francesco Musiani
Ariane Nunes‐Alves
Giulia Paiardi
Giulia Rossetti
S. Kashif Sadiq
Francesca Spyrakis
Carmine Talarico
Alexandros Tsengenes
Rebecca C. Wade
Conner Copeland
Jeremiah Gaiser
Daniel R. Olson
Amitava Roy
Vishwesh Venkatraman
Travis J. Wheeler
Haribabu Arthanari
Klara Blaschitz
Marco Cespugli
Vedat Durmaz
Konstantin Fackeldey
Patrick D. Fischer
Christoph Gorgulla
Christian Gruber
Karl Gruber
Michael Hetmann
Jamie E. Kinney
Krishna M. Padmanabha Das
Shreya Pandita
Amit Singh
Georg Steinkellner
Guilhem Tesseyre
Gerhard Wagner
Zi‐Fu Wang
Ryan J. Yust
Dmitry S. Druzhilovskiy
Dmitry A. Filimonov
Pavel V. Pogodin
Vladimir Poroikov
Anastassia V. Rudik
Leonid A. Stolbov
Alexander V. Veselovsky
Maria De Rosa
Giada De Simone
Maria R. Gulotta
Jessica Lombino
Nedra Mekni
Ugo Perricone
Arturo Casini
Amanda Embree
D. Benjamin Gordon
David Lei
Katelin Pratt
Christopher A. Voigt
Kuang‐Yu Chen
Yves Jacob
Tim Krischuns
Pierre Lafaye
Agnès Zettor
M. Luis Rodríguez
Kris M. White
Daren Fearon
Frank Von Delft
Martin A. Walsh
Dragos Horvath
Charles L. Brooks
Babak Falsafi
Bryan Ford
Adolfo García‐Sastre
Sang Yup Lee
Nadia Naffakh
Alexandre Varnek
Günter Klambauer
Thomas M. Hermans
The COVID-19 pandemic continues to pose a substantial threat to human lives and is likely to do so for years to come. Despite the availabili… (voir plus)ty of vaccines, searching for efficient small-molecule drugs that are widely available, including in low- and middle-income countries, is an ongoing challenge. In this work, we report the results of an open science community effort, the "Billion molecules against Covid-19 challenge", to identify small-molecule inhibitors against SARS-CoV-2 or relevant human receptors. Participating teams used a wide variety of computational methods to screen a minimum of 1 billion virtual molecules against 6 protein targets. Overall, 31 teams participated, and they suggested a total of 639,024 molecules, which were subsequently ranked to find 'consensus compounds'. The organizing team coordinated with various contract research organizations (CROs) and collaborating institutions to synthesize and test 878 compounds for biological activity against proteases (Nsp5, Nsp3, TMPRSS2), nucleocapsid N, RdRP (only the Nsp12 domain), and (alpha) spike protein S. Overall, 27 compounds with weak inhibition/binding were experimentally identified by binding-, cleavage-, and/or viral suppression assays and are presented here. Open science approaches such as the one presented here contribute to the knowledge base of future drug discovery efforts in finding better SARS-CoV-2 treatments.
SatBird: Bird Species Distribution Modeling with Remote Sensing and Citizen Science Data
Mélisande Teng
Amna Elmustafa
Benjamin Akera
Hager Radi
Biodiversity is declining at an unprecedented rate, impacting ecosystem services necessary to ensure food, water, and human health and well-… (voir plus)being. Understanding the distribution of species and their habitats is crucial for conservation policy planning. However, traditional methods in ecology for species distribution models (SDMs) generally focus either on narrow sets of species or narrow geographical areas and there remain significant knowledge gaps about the distribution of species. A major reason for this is the limited availability of data traditionally used, due to the prohibitive amount of effort and expertise required for traditional field monitoring. The wide availability of remote sensing data and the growing adoption of citizen science tools to collect species observations data at low cost offer an opportunity for improving biodiversity monitoring and enabling the modelling of complex ecosystems. We introduce a novel task for mapping bird species to their habitats by predicting species encounter rates from satellite images, and present SatBird, a satellite dataset of locations in the USA with labels derived from presence-absence observation data from the citizen science database eBird, considering summer (breeding) and winter seasons. We also provide a dataset in Kenya representing low-data regimes. We additionally provide environmental data and species range maps for each location. We benchmark a set of baselines on our dataset, including SOTA models for remote sensing tasks. SatBird opens up possibilities for scalably modelling properties of ecosystems worldwide.
Generative AI models should include detection mechanisms as a condition for public release
Alistair Knott
Dino Pedreschi
Raja Chatila
Tapabrata Chakraborti
Susan Leavy
Ricardo Baeza-Yates
D. Eyers
Andrew Trotman
Paul D. Teal
Przemyslaw Biecek
Stuart Russell
OC-NMN: Object-centric Compositional Neural Module Network for Generative Visual Analogical Reasoning
Rim Assouel
Pau Rodriguez
Perouz Taslakian
David Vazquez
Attention Schema in Neural Agents
Dianbo Liu
Samuele Bolotta
Mike He Zhu
Zahra Sheikhbahaee
Attention has become a common ingredient in deep learning architectures. It adds a dynamical selection of information on top of the static s… (voir plus)election of information supported by weights. In the same way, we can imagine a higher-order informational filter built on top of attention: an Attention Schema (AS), namely, a descriptive and predictive model of attention. In cognitive neuroscience, Attention Schema Theory (AST) supports this idea of distinguishing attention from AS. A strong prediction of this theory is that an agent can use its own AS to also infer the states of other agents' attention and consequently enhance coordination with other agents. As such, multi-agent reinforcement learning would be an ideal setting to experimentally test the validity of AST. We explore different ways in which attention and AS interact with each other. Our preliminary results indicate that agents that implement the AS as a recurrent internal control achieve the best performance. In general, these exploratory experiments suggest that equipping artificial agents with a model of attention can enhance their social intelligence.
Baking Symmetry into GFlowNets
George Ma
Emmanuel Bengio
Dinghuai Zhang
GFlowNets have exhibited promising performance in generating diverse candidates with high rewards. These networks generate objects increment… (voir plus)ally and aim to learn a policy that assigns probability of sampling objects in proportion to rewards. However, the current training pipelines of GFlowNets do not consider the presence of isomorphic actions, which are actions resulting in symmetric or isomorphic states. This lack of symmetry increases the amount of samples required for training GFlowNets and can result in inefficient and potentially incorrect flow functions. As a consequence, the reward and diversity of the generated objects decrease. In this study, our objective is to integrate symmetries into GFlowNets by identifying equivalent actions during the generation process. Experimental results using synthetic data demonstrate the promising performance of our proposed approaches.
Baking Symmetry into GFlowNets
George Ma
Emmanuel Bengio
Dinghuai Zhang
GFlowNets have exhibited promising performance in generating diverse candidates with high rewards. These networks generate objects increment… (voir plus)ally and aim to learn a policy that assigns probability of sampling objects in proportion to rewards. However, the current training pipelines of GFlowNets do not consider the presence of isomorphic actions, which are actions resulting in symmetric or isomorphic states. This lack of symmetry increases the amount of samples required for training GFlowNets and can result in inefficient and potentially incorrect flow functions. As a consequence, the reward and diversity of the generated objects decrease. In this study, our objective is to integrate symmetries into GFlowNets by identifying equivalent actions during the generation process. Experimental results using synthetic data demonstrate the promising performance of our proposed approaches.
Causal Discovery in Gene Regulatory Networks with GFlowNet: Towards Scalability in Large Systems
Trang Nguyen
Alexander Tong
Kanika Madan
Dianbo Liu
Understanding causal relationships within Gene Regulatory Networks (GRNs) is essential for unraveling the gene interactions in cellular proc… (voir plus)esses. However, causal discovery in GRNs is a challenging problem for multiple reasons including the existence of cyclic feedback loops and uncertainty that yields diverse possible causal structures. Previous works in this area either ignore cyclic dynamics (assume acyclic structure) or struggle with scalability. We introduce Swift-DynGFN as a novel framework that enhances causal structure learning in GRNs while addressing scalability concerns. Specifically, Swift-DynGFN exploits gene-wise independence to boost parallelization and to lower computational cost. Experiments on real single-cell RNA velocity and synthetic GRN datasets showcase the advancement in learning causal structure in GRNs and scalability in larger systems.
Crystal-GFN: sampling materials with desirable properties and constraints
Mistal
Alex Hernandez-Garcia
Alexandra Volokhova
Alexandre AGM Duval
Divya Sharma
pierre luc carrier
Michał Koziarski
Victor Schmidt
Discrete, compositional, and symbolic representations through attractor dynamics
Andrew Nam
Eric Elmoznino
Nikolay Malkin
Chen Sun
Compositionality is an important feature of discrete symbolic systems, such as language and programs, as it enables them to have infinite ca… (voir plus)pacity despite a finite symbol set. It serves as a useful abstraction for reasoning in both cognitive science and in AI, yet the interface between continuous and symbolic processing is often imposed by fiat at the algorithmic level, such as by means of quantization or a softmax sampling step. In this work, we explore how discretization could be implemented in a more neurally plausible manner through the modeling of attractor dynamics that partition the continuous representation space into basins that correspond to sequences of symbols. Building on established work in attractor networks and introducing novel training methods, we show that imposing structure in the symbolic space can produce compositionality in the attractor-supported representation space of rich sensory inputs. Lastly, we argue that our model exhibits the process of an information bottleneck that is thought to play a role in conscious experience, decomposing the rich information of a sensory input into stable components encoding symbolic information.
Learning to Scale Logits for Temperature-Conditional GFlowNets
Minsu Kim
Joohwan Ko
Dinghuai Zhang
Ling Pan
Taeyoung Yun
Woo Chang Kim
Jinkyoo Park
GFlowNets are probabilistic models that learn a stochastic policy that sequentially generates compositional structures, such as molecular gr… (voir plus)aphs. They are trained with the objective of sampling such objects with probability proportional to the object's reward. Among GFlowNets, the temperature-conditional GFlowNets represent a family of policies indexed by temperature, and each is associated with the correspondingly tempered reward function. The major benefit of temperature-conditional GFlowNets is the controllability of GFlowNets' exploration and exploitation through adjusting temperature. We propose a \textit{Learning to Scale Logits for temperature-conditional GFlowNets} (LSL-GFN), a novel architectural design that greatly accelerates the training of temperature-conditional GFlowNets. It is based on the idea that previously proposed temperature-conditioning approaches introduced numerical challenges in the training of the deep network because different temperatures may give rise to very different gradient profiles and ideal scales of the policy's logits. We find that the challenge is greatly reduced if a learned function of the temperature is used to scale the policy's logits directly. We empirically show that our strategy dramatically improves the performances of GFlowNets, outperforming other baselines, including reinforcement learning and sampling methods, in terms of discovering diverse modes in multiple biochemical tasks.
Multi-Fidelity Active Learning with GFlowNets
Alex Hernandez-Garcia
Nikita Saxena
Moksh J. Jain
Cheng-Hao Liu
In the last decades, the capacity to generate large amounts of data in science and engineering applications has been growing steadily. Meanw… (voir plus)hile, the progress in machine learning has turned it into a suitable tool to process and utilise the available data. Nonetheless, many relevant scientific and engineering problems present challenges where current machine learning methods cannot yet efficiently leverage the available data and resources. For example, in scientific discovery, we are often faced with the problem of exploring very large, high-dimensional spaces, where querying a high fidelity, black-box objective function is very expensive. Progress in machine learning methods that can efficiently tackle such problems would help accelerate currently crucial areas such as drug and materials discovery. In this paper, we propose the use of GFlowNets for multi-fidelity active learning, where multiple approximations of the black-box function are available at lower fidelity and cost. GFlowNets are recently proposed methods for amortised probabilistic inference that have proven efficient for exploring large, high-dimensional spaces and can hence be practical in the multi-fidelity setting too. Here, we describe our algorithm for multi-fidelity active learning with GFlowNets and evaluate its performance in both well-studied synthetic tasks and practically relevant applications of molecular discovery. Our results show that multi-fidelity active learning with GFlowNets can efficiently leverage the availability of multiple oracles with different costs and fidelities to accelerate scientific discovery and engineering design.