Portrait de Yoshua Bengio

Yoshua Bengio

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur titulaire, Université de Montréal, Département d'informatique et de recherche opérationnelle
Directeur scientifique, Équipe de direction
Sujets de recherche
Apprentissage automatique médical
Apprentissage de représentations
Apprentissage par renforcement
Apprentissage profond
Causalité
Modèles génératifs
Modèles probabilistes
Modélisation moléculaire
Neurosciences computationnelles
Raisonnement
Réseaux de neurones en graphes
Réseaux de neurones récurrents
Théorie de l'apprentissage automatique
Traitement du langage naturel

Biographie

*Pour toute demande média, veuillez écrire à medias@mila.quebec.

Pour plus d’information, contactez Marie-Josée Beauchamp, adjointe administrative à marie-josee.beauchamp@mila.quebec.

Reconnu comme une sommité mondiale en intelligence artificielle, Yoshua Bengio s’est surtout distingué par son rôle de pionnier en apprentissage profond, ce qui lui a valu le prix A. M. Turing 2018, le « prix Nobel de l’informatique », avec Geoffrey Hinton et Yann LeCun. Il est professeur titulaire à l’Université de Montréal, fondateur et directeur scientifique de Mila – Institut québécois d’intelligence artificielle, et codirige en tant que senior fellow le programme Apprentissage automatique, apprentissage biologique de l'Institut canadien de recherches avancées (CIFAR). Il occupe également la fonction de directeur scientifique d’IVADO.

En 2018, il a été l’informaticien qui a recueilli le plus grand nombre de nouvelles citations au monde. En 2019, il s’est vu décerner le prestigieux prix Killam. Depuis 2022, il détient le plus grand facteur d’impact (h-index) en informatique à l’échelle mondiale. Il est fellow de la Royal Society de Londres et de la Société royale du Canada, et officier de l’Ordre du Canada.

Soucieux des répercussions sociales de l’IA et de l’objectif que l’IA bénéficie à tous, il a contribué activement à la Déclaration de Montréal pour un développement responsable de l’intelligence artificielle.

Étudiants actuels

Stagiaire de recherche - McGill
Collaborateur·rice alumni - UdeM
Stagiaire de recherche - UdeM
Doctorat - UdeM
Collaborateur·rice alumni - Université du Québec à Rimouski
Visiteur de recherche indépendant
Co-superviseur⋅e :
Doctorat - UdeM
Collaborateur·rice alumni - UQAR
Collaborateur·rice de recherche - N/A
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Collaborateur·rice de recherche - KAIST
Stagiaire de recherche - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Doctorat - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Stagiaire de recherche - Barcelona University
Stagiaire de recherche - UdeM
Stagiaire de recherche - UdeM
Stagiaire de recherche
Postdoctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Maîtrise recherche - UdeM
Co-superviseur⋅e :
Collaborateur·rice alumni - UdeM
Collaborateur·rice de recherche - UdeM
Collaborateur·rice alumni - UdeM
Collaborateur·rice alumni - UdeM
Collaborateur·rice alumni
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - Imperial College London
Doctorat - UdeM
Collaborateur·rice alumni - UdeM
Collaborateur·rice alumni - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Collaborateur·rice de recherche - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Visiteur de recherche indépendant - UdeM
Collaborateur·rice de recherche - Ying Wu Coll of Computing
Doctorat - University of Waterloo
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - Max-Planck-Institute for Intelligent Systems
Doctorat - UdeM
Postdoctorat - UdeM
Visiteur de recherche indépendant - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - UdeM
Maîtrise recherche - UdeM
Collaborateur·rice alumni - UdeM
Stagiaire de recherche - UdeM
Maîtrise recherche - UdeM
Collaborateur·rice alumni
Visiteur de recherche indépendant - Technical University of Munich
Postdoctorat - Polytechnique
Co-superviseur⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Collaborateur·rice de recherche - RWTH Aachen University (Rheinisch-Westfälische Technische Hochschule Aachen)
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Collaborateur·rice alumni - UdeM
Collaborateur·rice de recherche
Collaborateur·rice de recherche - KAIST
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :

Publications

On the interplay between noise and curvature and its effect on optimization and generalization
Valentin Thomas
Fabian Pedregosa
Bart van Merriënboer
Pierre-Antoine Manzagol
The speed at which one can minimize an expected loss using stochastic methods depends on two properties: the curvature of the loss and the v… (voir plus)ariance of the gradients. While most previous works focus on one or the other of these properties, we explore how their interaction affects optimization speed. Further, as the ultimate goal is good generalization performance, we clarify how both curvature and noise are relevant to properly estimate the generalization gap. Realizing that the limitations of some existing works stems from a confusion between these matrices, we also clarify the distinction between the Fisher matrix, the Hessian, and the covariance matrix of the gradients.
A deep learning framework for neuroscience
Timothy P. Lillicrap
Philippe Beaudoin
Rafal Bogacz
Amelia Christensen
Claudia Clopath
Rui Ponte Costa
Archy de Berker
Surya Ganguli
Colleen J Gillon
Danijar Hafner
Adam Kepecs
Nikolaus Kriegeskorte
Peter Latham
Grace W. Lindsay
Kenneth D. Miller
Richard Naud
Christopher C. Pack
Panayiota Poirazi … (voir 12 de plus)
Pieter Roelfsema
João Sacramento
Andrew Saxe
Benjamin Scellier
Anna C. Schapiro
Walter Senn
Greg Wayne
Daniel Yamins
Friedemann Zenke
Joel Zylberberg
Denis Therien
Konrad Paul Kording
Interpolation Consistency Training for Semi-Supervised Learning
Vikas Verma
Kenji Kawaguchi
Alex Lamb
Juho Kannala
David Lopez-Paz
Arno Solin
On the interplay between noise and curvature and its effect on optimization and generalization
Valentin Thomas
Fabian Pedregosa
Bart van Merriënboer
Pierre-Antoine Mangazol
The speed at which one can minimize an expected loss using stochastic methods depends on two properties: the curvature of the loss and the v… (voir plus)ariance of the gradients. While most previous works focus on one or the other of these properties, we explore how their interaction affects optimization speed. Further, as the ultimate goal is good generalization performance, we clarify how both curvature and noise are relevant to properly estimate the generalization gap. Realizing that the limitations of some existing works stems from a confusion between these matrices, we also clarify the distinction between the Fisher matrix, the Hessian, and the covariance matrix of the gradients.
Information matrices and generalization
Valentin Thomas
Fabian Pedregosa
Bart van Merriënboer
Pierre-Antoine Manzagol
This work revisits the use of information criteria to characterize the generalization of deep learning models. In particular, we empirically… (voir plus) demonstrate the effectiveness of the Takeuchi information criterion (TIC), an extension of the Akaike information criterion (AIC) for misspecified models, in estimating the generalization gap, shedding light on why quantities such as the number of parameters cannot quantify generalization. The TIC depends on both the Hessian of the loss H and the covariance of the gradients C. By exploring the similarities and differences between these two matrices as well as the Fisher information matrix F, we study the interplay between noise and curvature in deep models. We also address the question of whether C is a reasonable approximation to F, as is commonly assumed.
Information matrices and generalization
Valentin Thomas
Fabian Pedregosa
Bart van Merriënboer
Pierre-Antoine Manzagol
This work revisits the use of information criteria to characterize the generalization of deep learning models. In particular, we empirically… (voir plus) demonstrate the effectiveness of the Takeuchi information criterion (TIC), an extension of the Akaike information criterion (AIC) for misspecified models, in estimating the generalization gap, shedding light on why quantities such as the number of parameters cannot quantify generalization. The TIC depends on both the Hessian of the loss H and the covariance of the gradients C. By exploring the similarities and differences between these two matrices as well as the Fisher information matrix F, we study the interplay between noise and curvature in deep models. We also address the question of whether C is a reasonable approximation to F, as is commonly assumed.
N-BEATS: Neural basis expansion analysis for interpretable time series forecasting
Boris Oreshkin
Dmitri Carpov
We focus on solving the univariate times series point forecasting problem using deep learning. We propose a deep neural architecture based o… (voir plus)n backward and forward residual links and a very deep stack of fully-connected layers. The architecture has a number of desirable properties, being interpretable, applicable without modification to a wide array of target domains, and fast to train. We test the proposed architecture on several well-known datasets, including M3, M4 and TOURISM competition datasets containing time series from diverse domains. We demonstrate state-of-the-art performance for two configurations of N-BEATS for all the datasets, improving forecast accuracy by 11% over a statistical benchmark and by 3% over last year's winner of the M4 competition, a domain-adjusted hand-crafted hybrid between neural network and statistical time series models. The first configuration of our model does not employ any time-series-specific components and its performance on heterogeneous datasets strongly suggests that, contrarily to received wisdom, deep learning primitives such as residual blocks are by themselves sufficient to solve a wide range of forecasting problems. Finally, we demonstrate how the proposed architecture can be augmented to provide outputs that are interpretable without considerable loss in accuracy.
Interpolation Consistency Training for Semi-Supervised Learning
Vikas Verma
Alex Lamb
Juho Kannala
David Lopez-Paz
Interpolated Adversarial Training: Achieving Robust Neural Networks without Sacrificing Accuracy
Alex Lamb
Vikas Verma
Juho Kannala
Adversarial robustness has become a central goal in deep learning, both in theory and practice. However, successful methods to improve adver… (voir plus)sarial robustness (such as adversarial training) greatly hurt generalization performance on the clean data. This could have a major impact on how adversarial robustness affects real world systems (i.e. many may opt to forego robustness if it can improve performance on the clean data). We propose Interpolated Adversarial Training, which employs recently proposed interpolation based training methods in the framework of adversarial training. On CIFAR-10, adversarial training increases clean test error from 5.8% to 16.7%, whereas with our Interpolated adversarial training we retain adversarial robustness while achieving a clean test error of only 6.5%. With our technique, the relative error increase for the robust model is reduced from 187.9% to just 12.1%.
Interpolated Adversarial Training: Achieving Robust Neural Networks without Sacrificing Accuracy
Alex Lamb
Vikas Verma
Juho Kannala
Adversarial robustness has become a central goal in deep learning, both in theory and practice. However, successful methods to improve adver… (voir plus)sarial robustness (such as adversarial training) greatly hurt generalization performance on the clean data. This could have a major impact on how adversarial robustness affects real world systems (i.e. many may opt to forego robustness if it can improve performance on the clean data). We propose Interpolated Adversarial Training, which employs recently proposed interpolation based training methods in the framework of adversarial training. On CIFAR-10, adversarial training increases clean test error from 5.8% to 16.7%, whereas with our Interpolated adversarial training we retain adversarial robustness while achieving a clean test error of only 6.5%. With our technique, the relative error increase for the robust model is reduced from 187.9% to just 12.1%.
Predicting Tactical Solutions to Operational Planning Problems under Imperfect Information
Eric P. Larsen
Sébastien Lachapelle
This paper offers a methodological contribution at the intersection of machine learning and operations research. Namely, we propose a method… (voir plus)ology to quickly predict expected tactical descriptions of operational solutions (TDOSs). The problem we address occurs in the context of two-stage stochastic programming, where the second stage is demanding computationally. We aim to predict at a high speed the expected TDOS associated with the second-stage problem, conditionally on the first-stage variables. This may be used in support of the solution to the overall two-stage problem by avoiding the online generation of multiple second-stage scenarios and solutions. We formulate the tactical prediction problem as a stochastic optimal prediction program, whose solution we approximate with supervised machine learning. The training data set consists of a large number of deterministic operational problems generated by controlled probabilistic sampling. The labels are computed based on solutions to these problems (solved independently and offline), employing appropriate aggregation and subselection methods to address uncertainty. Results on our motivating application on load planning for rail transportation show that deep learning models produce accurate predictions in very short computing time (milliseconds or less). The predictive accuracy is close to the lower bounds calculated based on sample average approximation of the stochastic prediction programs.
Information Fusion in Deep Convolutional Neural Networks for Biomedical Image Segmentation 1
Mohammad Havaei
Nicolas Guizard