Portrait of Marcin Sendera is unavailable

Marcin Sendera

Collaborating Alumni - Université de Montréal
Supervisor
Research Topics
Deep Learning
Generative Models
Machine Learning Theory
Online Learning
Probabilistic Models
Representation Learning

Publications

Outsourced diffusion sampling: Efficient posterior inference in latent spaces of generative models
Any well-behaved generative model over a variable …
Solving Bayesian inverse problems with diffusion priors and off-policy RL
This paper presents a practical application of Relative Trajectory Balance (RTB), a recently introduced off-policy reinforcement learning (R… (see more)L) objective that can asymptotically solve Bayesian inverse problems optimally. We extend the original work by using RTB to train conditional diffusion model posteriors from pretrained unconditional priors for challenging linear and non-linear inverse problems in vision, and science. We use the objective alongside techniques such as off-policy backtracking exploration to improve training. Importantly, our results show that existing training-free diffusion posterior methods struggle to perform effective posterior inference in latent space due to inherent biases.
Outsourced diffusion sampling: Efficient posterior inference in latent spaces of generative models
Any well-behaved generative model over a variable …
Amortizing intractable inference in diffusion models for vision, language, and control
Diffusion models have emerged as effective distribution estimators in vision, language, and reinforcement learning, but their use as priors … (see more)in downstream tasks poses an intractable posterior inference problem. This paper studies amortized sampling of the posterior over data,
Improved off-policy training of diffusion samplers
We study the problem of training diffusion models to sample from a distribution with a given unnormalized density or energy function. We ben… (see more)chmark several diffusion-structured inference methods, including simulation-based variational approaches and off-policy methods (continuous generative flow networks). Our results shed light on the relative advantages of existing algorithms while bringing into question some claims from past work. We also propose a novel exploration strategy for off-policy methods, based on local search in the target space with the use of a replay buffer, and show that it improves the quality of samples on a variety of target distributions. Our code for the sampling methods and benchmarks studied is made public at [this link](https://github.com/GFNOrg/gfn-diffusion) as a base for future work on diffusion models for amortized inference.
Amortizing intractable inference in diffusion models for vision, language, and control
Diffusion models have emerged as effective distribution estimators in vision, language, and reinforcement learning, but their use as priors … (see more)in downstream tasks poses an intractable posterior inference problem. This paper studies amortized sampling of the posterior over data,
Amortizing intractable inference in diffusion models for vision, language, and control
Diffusion models have emerged as effective distribution estimators in vision, language, and reinforcement learning, but their use as priors … (see more)in downstream tasks poses an intractable posterior inference problem. This paper studies amortized sampling of the posterior over data,
Amortizing intractable inference in diffusion models for vision, language, and control
Diffusion models have emerged as effective distribution estimators in vision, language, and reinforcement learning, but their use as priors … (see more)in downstream tasks poses an intractable posterior inference problem. This paper studies amortized sampling of the posterior over data,
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Efficiently generating statistically independent samples from an unnormalized probability distribution, such as equilibrium samples of many-… (see more)body systems, is a foundational problem in science. In this paper, we propose Iterated Denoising Energy Matching (iDEM), an iterative algorithm that uses a novel stochastic score matching objective leveraging solely the energy function and its gradient---and no data samples---to train a diffusion-based sampler. Specifically, iDEM alternates between (I) sampling regions of high model density from a diffusion-based sampler and (II) using these samples in our stochastic matching objective to further improve the sampler. iDEM is scalable to high dimensions as the inner matching objective, is *simulation-free*, and requires no MCMC samples. Moreover, by leveraging the fast mode mixing behavior of diffusion, iDEM smooths out the energy landscape enabling efficient exploration and learning of an amortized sampler. We evaluate iDEM on a suite of tasks ranging from standard synthetic energy functions to invariant
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Efficiently generating statistically independent samples from an unnormalized probability distribution, such as equilibrium samples of many-… (see more)body systems, is a foundational problem in science. In this paper, we propose Iterated Denoising Energy Matching (iDEM), an iterative algorithm that uses a novel stochastic score matching objective leveraging solely the energy function and its gradient -- and no data samples -- to train a diffusion-based sampler. Specifically, iDEM alternates between (I) sampling regions of high model density from a diffusion-based sampler and (II) using these samples in our stochastic matching objective to further improve the sampler. iDEM is scalable to high dimensions as the inner matching objective, is simulation-free, and requires no MCMC samples. Moreover, by leveraging the fast mode mixing behavior of diffusion, iDEM smooths out the energy landscape enabling efficient exploration and learning of an amortized sampler. We evaluate iDEM on a suite of tasks ranging from standard synthetic energy functions to invariant
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Efficiently generating statistically independent samples from an unnormalized probability distribution, such as equilibrium samples of many-… (see more)body systems, is a foundational problem in science. In this paper, we propose Iterated Denoising Energy Matching (iDEM), an iterative algorithm that uses a novel stochastic score matching objective leveraging solely the energy function and its gradient -- and no data samples -- to train a diffusion-based sampler. Specifically, iDEM alternates between (I) sampling regions of high model density from a diffusion-based sampler and (II) using these samples in our stochastic matching objective to further improve the sampler. iDEM is scalable to high dimensions as the inner matching objective, is simulation-free, and requires no MCMC samples. Moreover, by leveraging the fast mode mixing behavior of diffusion, iDEM smooths out the energy landscape enabling efficient exploration and learning of an amortized sampler. We evaluate iDEM on a suite of tasks ranging from standard synthetic energy functions to invariant
On diffusion models for amortized inference: Benchmarking and improving stochastic control and sampling
We study the problem of training diffusion models to sample from a distribution with a given unnormalized density or energy function. We ben… (see more)chmark several diffusion-structured inference methods, including simulation-based variational approaches and off-policy methods (continuous generative flow networks). Our results shed light on the relative advantages of existing algorithms while bringing into question some claims from past work. We also propose a novel exploration strategy for off-policy methods, based on local search in the target space with the use of a replay buffer, and show that it improves the quality of samples on a variety of target distributions. Our code for the sampling methods and benchmarks studied is made public at https://github.com/GFNOrg/gfn-diffusion as a base for future work on diffusion models for amortized inference.