Portrait de Yoshua Bengio

Yoshua Bengio

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur titulaire, Université de Montréal, Département d'informatique et de recherche opérationnelle
Fondateur et Conseiller scientifique, Équipe de direction
Sujets de recherche
Apprentissage automatique médical
Apprentissage de représentations
Apprentissage par renforcement
Apprentissage profond
Causalité
Modèles génératifs
Modèles probabilistes
Modélisation moléculaire
Neurosciences computationnelles
Raisonnement
Réseaux de neurones en graphes
Réseaux de neurones récurrents
Théorie de l'apprentissage automatique
Traitement du langage naturel

Biographie

*Pour toute demande média, veuillez écrire à medias@mila.quebec.

Pour plus d’information, contactez Marie-Josée Beauchamp, adjointe administrative à marie-josee.beauchamp@mila.quebec.

Reconnu comme une sommité mondiale en intelligence artificielle, Yoshua Bengio s’est surtout distingué par son rôle de pionnier en apprentissage profond, ce qui lui a valu le prix A. M. Turing 2018, le « prix Nobel de l’informatique », avec Geoffrey Hinton et Yann LeCun. Il est professeur titulaire à l’Université de Montréal, fondateur et conseiller scientifique de Mila – Institut québécois d’intelligence artificielle, et codirige en tant que senior fellow le programme Apprentissage automatique, apprentissage biologique de l'Institut canadien de recherches avancées (CIFAR). Il occupe également la fonction de conseiller spécial et directeur scientifique fondateur d’IVADO.

En 2018, il a été l’informaticien qui a recueilli le plus grand nombre de nouvelles citations au monde. En 2019, il s’est vu décerner le prestigieux prix Killam. Depuis 2022, il détient le plus grand facteur d’impact (h-index) en informatique à l’échelle mondiale. Il est fellow de la Royal Society de Londres et de la Société royale du Canada, et officier de l’Ordre du Canada.

Soucieux des répercussions sociales de l’IA et de l’objectif que l’IA bénéficie à tous, il a contribué activement à la Déclaration de Montréal pour un développement responsable de l’intelligence artificielle.

Étudiants actuels

Collaborateur·rice alumni - McGill
Collaborateur·rice alumni - UdeM
Collaborateur·rice de recherche - Cambridge University
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Visiteur de recherche indépendant
Co-superviseur⋅e :
Doctorat - UdeM
Visiteur de recherche indépendant
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - N/A
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Collaborateur·rice de recherche - KAIST
Collaborateur·rice alumni - UdeM
Collaborateur·rice alumni - UdeM
Co-superviseur⋅e :
Visiteur de recherche indépendant
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Doctorat - UdeM
Doctorat - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - UdeM
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - UdeM
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni
Doctorat - UdeM
Collaborateur·rice alumni - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Visiteur de recherche indépendant - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - Ying Wu Coll of Computing
Collaborateur·rice de recherche - University of Waterloo
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - Max-Planck-Institute for Intelligent Systems
Collaborateur·rice de recherche - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Postdoctorat - UdeM
Visiteur de recherche indépendant - UdeM
Postdoctorat - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Visiteur de recherche indépendant
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - UdeM
Collaborateur·rice alumni - UdeM
Postdoctorat
Co-superviseur⋅e :
Visiteur de recherche indépendant - Technical University of Munich
Doctorat - UdeM
Co-superviseur⋅e :
Visiteur de recherche indépendant
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - UdeM
Postdoctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche
Collaborateur·rice de recherche - UdeM
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - McGill
Superviseur⋅e principal⋅e :

Publications

BabyAI 1.1
David Y. T. Hui
Maxime Chevalier-Boisvert
The BabyAI platform is designed to measure the sample efficiency of training an agent to follow grounded-language instructions. BabyAI 1.0 p… (voir plus)resents baseline results of an agent trained by deep imitation or reinforcement learning. BabyAI 1.1 improves the agent's architecture in three minor ways. This increases reinforcement learning sample efficiency by up to 3 times and improves imitation learning performance on the hardest level from 77 % to 90.4 %. We hope that these improvements increase the computational efficiency of BabyAI experiments and help users design better agents.
BabyAI 1.1
David Y. T. Hui
Maxime Chevalier-Boisvert
S2RMs: Spatially Structured Recurrent Modules
Nasim Rahaman
Muhammad Waleed Gondal
Manuel Wuthrich
Y. Sharma
Bernhard Schölkopf
Compositional Generalization by Factorizing Alignment and Translation
Jacob Russin
R. O’Reilly
Exploiting Syntactic Structure for Better Language Modeling: A Syntactic Distance Approach
It is commonly believed that knowledge of syntactic structure should improve language modeling. However, effectively and computationally eff… (voir plus)iciently incorporating syntactic structure into neural language models has been a challenging topic. In this paper, we make use of a multi-task objective, i.e., the models simultaneously predict words as well as ground truth parse trees in a form called “syntactic distances”, where information between these two separate objectives shares the same intermediate representation. Experimental results on the Penn Treebank and Chinese Treebank datasets show that when ground truth parse trees are provided as additional training signals, the model is able to achieve lower perplexity and induce trees with better quality.
Factorized embeddings learns rich and biologically meaningful embedding spaces using factorized tensor decomposition
Object Files and Schemata: Factorizing Declarative and Procedural Knowledge in Dynamical Systems
Philippe Beaudoin
Sergey Levine
Charles Blundell
Michael Curtis Mozer
Inherent privacy limitations of decentralized contact tracing apps
Daphne Ippolito
Richard Janda
Max Jarvie
Jean-François Rousseau
abhinav sharma
Yun William Yu
Image-to-image Mapping with Many Domains by Sparse Attribute Transfer
Rethinking Distributional Matching Based Domain Adaptation
Bin Li
Yezhen Wang
Tong Che
Shanghang Zhang
Sicheng Zhao
Pengfei Xu
Wenzhen Zhou
Kurt W. Keutzer
Domain adaptation (DA) is a technique that transfers predictive models trained on a labeled source domain to an unlabeled target domain, wit… (voir plus)h the core difficulty of resolving distributional shift between domains. Currently, most popular DA algorithms are based on distributional matching (DM). However in practice, realistic domain shifts (RDS) may violate their basic assumptions and as a result these methods will fail. In this paper, in order to devise robust DA algorithms, we first systematically analyze the limitations of DM based methods, and then build new benchmarks with more realistic domain shifts to evaluate the well-accepted DM methods. We further propose InstaPBM, a novel Instance-based Predictive Behavior Matching method for robust DA. Extensive experiments on both conventional and RDS benchmarks demonstrate both the limitations of DM methods and the efficacy of InstaPBM: Compared with the best baselines, InstaPBM improves the classification accuracy respectively by
HNHN: Hypergraph Networks with Hyperedge Neurons
Yihe Dong
W. Sawin
Quantized Guided Pruning for Efficient Hardware Implementations of Deep Neural Networks
Matthieu Arzel
Nicolas Farrugia
Deep Neural Networks (DNNs) in general and Convolutional Neural Networks (CNNs) in particular are state-of-the-art in numerous computer visi… (voir plus)on tasks such as object classification and detection. However, the large amount of parameters they contain leads to a high computational complexity and strongly limits their usability in budget-constrained devices such as embedded devices. In this paper, we propose a combination of a pruning technique and a quantization scheme that effectively reduce the complexity and memory usage of convolutional layers of CNNs, by replacing the complex convolutional operation by a low-cost multiplexer. We perform experiments on CIFAR10, CIFAR100 and SVHN datasets and show that the proposed method achieves almost state-of-the-art accuracy, while drastically reducing the computational and memory footprints compared to the baselines. We also propose an efficient hardware architecture, implemented on Field Programmable Gate Arrays (FPGAs), to accelerate inference, which works as a pipeline and accommodates multiple layers working at the same time to speed up the inference process. In contrast with most proposed approaches which have used external memory or software defined memory controllers, our work is based on algorithmic optimization and full-hardware design, enabling a direct, on-chip memory implementation of a DNN while keeping close to state of the art accuracy.