Portrait of Assya Trofimov is unavailable

Assya Trofimov

Alumni

Publications

Transposable elements regulate thymus development and function
Jean-David Larouche
Céline M. Laumont
Krystel Vincent
Leslie Hesnard
Sylvie Brochu
Caroline Côté
Juliette Humeau
Eric Bonneil
Joël Lanoix
Chantal Durette
Patrick Gendron
Jean-Philippe Laverdure
Ellen R. Richie
Pierre Thibault
Claude Perreault
Transposable elements regulate thymus development and function 1
Jean-David Larouche
Céline M. Laumont
Krystel Vincent
Leslie Hesnard
Sylvie Brochu
Caroline Côté
Juliette Humeau
Eric Bonneil
Joël Lanoix
Chantal Durette
Patrick Gendron
Jean-Philippe Laverdure
Ellen Rothman Richie
Pierre Thibault
Claude Perreault
21 Transposable elements (TE) are repetitive sequences representing ~45% of the human and mouse genomes 22 and are highly expressed by medul… (see more)lary thymic epithelial cells (mTEC). In this study, we investigated the 23 role of transposable elements (TE), which are highly expressed by medullary thymic epithelial cells 24 (mTEC), on T-cell development in the thymus. We performed multi-omic analyses of TEs in human and 25 mouse thymic cells to elucidate their role in T cell development. We report that TE expression in the 26 human thymus is high and shows extensive ageand cell lineage-related variations. TEs interact with 27 multiple transcription factors in all cell types of the human thymus. Two cell types express particularly 28 broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDC). In mTECs, TEs interact with 29 transcription factors essential for mTEC development and function (e.g., PAX1 and RELB) and generate 30 MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 31 regulate non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large 32 numbers of TEs that lead to the formation of dsRNA, triggering RIG-I and MDA5 signaling and 33 explaining why thymic pDCs constitutively secrete IFN ɑ/β. This study illustrates the diversity of 34 interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic 35 cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. 36 Therefore, we propose that the orchestration of TE expression in thymic cells is critical to prevent 37 autoimmunity in vertebrates. 38
Transposable elements regulate thymus development and function 1
Jean-David Larouche
Céline M. Laumont
Krystel Vincent
Leslie Hesnard
Sylvie Brochu
Caroline Côté
Juliette Humeau
Eric Bonneil
Joël Lanoix
Chantal Durette
Patrick Gendron
Jean-Philippe Laverdure
Ellen Rothman Richie
Pierre Thibault
Claude Perreault
21 Transposable elements (TE) are repetitive sequences representing ~45% of the human and mouse genomes 22 and are highly expressed by medul… (see more)lary thymic epithelial cells (mTEC). In this study, we investigated the 23 role of transposable elements (TE), which are highly expressed by medullary thymic epithelial cells 24 (mTEC), on T-cell development in the thymus. We performed multi-omic analyses of TEs in human and 25 mouse thymic cells to elucidate their role in T cell development. We report that TE expression in the 26 human thymus is high and shows extensive ageand cell lineage-related variations. TEs interact with 27 multiple transcription factors in all cell types of the human thymus. Two cell types express particularly 28 broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDC). In mTECs, TEs interact with 29 transcription factors essential for mTEC development and function (e.g., PAX1 and RELB) and generate 30 MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 31 regulate non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large 32 numbers of TEs that lead to the formation of dsRNA, triggering RIG-I and MDA5 signaling and 33 explaining why thymic pDCs constitutively secrete IFN ɑ/β. This study illustrates the diversity of 34 interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic 35 cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. 36 Therefore, we propose that the orchestration of TE expression in thymic cells is critical to prevent 37 autoimmunity in vertebrates. 38
Two types of human TCR differentially regulate reactivity to self and non-self antigens
Jean-David Larouche
Jonathan Séguin
Jean-Philippe Laverdure
Ann Brasey
Grégory Ehx
Denis-Claude Roy
Lambert Busque
Silvy Lachance
Claude Perreault
Two types of human TCR differentially regulate reactivity to self and non-self antigens
Jean-David Larouche
Jonathan Y. Séguin
Jean-Philippe Laverdure
A. Brasey
Grégory Ehx
D. Roy
Lambert Busque
Silvy Lachance
Claude Perreault
Accounting for Variance in Machine Learning Benchmarks
Strong empirical evidence that one machine-learning algorithm A outperforms another one B ideally calls for multiple trials optimizing the l… (see more)earning pipeline over sources of variation such as data sampling, data augmentation, parameter initialization, and hyperparameters choices. This is prohibitively expensive, and corners are cut to reach conclusions. We model the whole benchmarking process, revealing that variance due to data sampling, parameter initialization and hyperparameter choice impact markedly the results. We analyze the predominant comparison methods used today in the light of this variance. We show a counter-intuitive result that adding more sources of variation to an imperfect estimator approaches better the ideal estimator at a 51 times reduction in compute cost. Building on these results, we study the error rate of detecting improvements, on five different deep-learning tasks/architectures. This study leads us to propose recommendations for performance comparisons.
Factorized embeddings learns rich and biologically meaningful embedding spaces using factorized tensor decomposition