This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Karsten Roth
Alumni
Publications
Disentanglement of Correlated Factors via Hausdorff Factorized Support
A grand goal in deep learning research is to learn representations capable of generalizing across distribution shifts. Disentanglement is on… (see more)e promising direction aimed at aligning a model's representation with the underlying factors generating the data (e.g. color or background). Existing disentanglement methods, however, rely on an often unrealistic assumption: that factors are statistically independent. In reality, factors (like object color and shape) are correlated. To address this limitation, we consider the use of a relaxed disentanglement criterion -- the Hausdorff Factorized Support (HFS) criterion -- that encourages only pairwise factorized \emph{support}, rather than a factorial distribution, by minimizing a Hausdorff distance. This allows for arbitrary distributions of the factors over their support, including correlations between them. We show that the use of HFS consistently facilitates disentanglement and recovery of ground-truth factors across a variety of correlation settings and benchmarks, even under severe training correlations and correlation shifts, with in parts over
Few or zero-shot adaptation to novel tasks is important for the scalability and deployment of machine learning models. It is therefore cruci… (see more)al to find properties that encourage more transferable features in deep networks for generalization. In this paper, we show that models that learn uniformly distributed features from the training data, are able to perform better transfer learning at test-time. Motivated by this, we evaluate our method: uniformity regularization (UR) on its ability to facilitate adaptation to unseen tasks and data on six distinct domains: Few-Learning with Images, Few-shot Learning with Language, Deep Metric Learning, 0-Shot Domain Adaptation, Out-of-Distribution classification, and Neural Radiance Fields. Across all experiments, we show that using UR, we are able to learn robust vision systems which consistently offer benefits over baselines trained without uniformity regularization and are able to achieve state-of-the-art performance in Deep Metric Learning, Few-shot learning with images and language.
2022-06-19
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (published)
Introduction The need to streamline patient management for coronavirus disease-19 (COVID-19) has become more pressing than ever. Chest X-ray… (see more)s (CXRs) provide a non-invasive (potentially bedside) tool to monitor the progression of the disease. In this study, we present a severity score prediction model for COVID-19 pneumonia for frontal chest X-ray images. Such a tool can gauge the severity of COVID-19 lung infections (and pneumonia in general) that can be used for escalation or de-escalation of care as well as monitoring treatment efficacy, especially in the ICU. Methods Images from a public COVID-19 database were scored retrospectively by three blinded experts in terms of the extent of lung involvement as well as the degree of opacity. A neural network model that was pre-trained on large (non-COVID-19) chest X-ray datasets is used to construct features for COVID-19 images which are predictive for our task. Results This study finds that training a regression model on a subset of the outputs from this pre-trained chest X-ray model predicts our geographic extent score (range 0-8) with 1.14 mean absolute error (MAE) and our lung opacity score (range 0-6) with 0.78 MAE. Conclusions These results indicate that our model’s ability to gauge the severity of COVID-19 lung infections could be used for escalation or de-escalation of care as well as monitoring treatment efficacy, especially in the ICU. To enable follow up work, we make our code, labels, and data available online.