Portrait de Yoshua Bengio

Yoshua Bengio

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur titulaire, Université de Montréal, Département d'informatique et de recherche opérationnelle
Fondateur et Conseiller scientifique, Équipe de direction
Sujets de recherche
Apprentissage automatique médical
Apprentissage de représentations
Apprentissage par renforcement
Apprentissage profond
Causalité
Modèles génératifs
Modèles probabilistes
Modélisation moléculaire
Neurosciences computationnelles
Raisonnement
Réseaux de neurones en graphes
Réseaux de neurones récurrents
Théorie de l'apprentissage automatique
Traitement du langage naturel

Biographie

*Pour toute demande média, veuillez écrire à medias@mila.quebec.

Pour plus d’information, contactez Marie-Josée Beauchamp, adjointe administrative à marie-josee.beauchamp@mila.quebec.

Reconnu comme une sommité mondiale en intelligence artificielle, Yoshua Bengio s’est surtout distingué par son rôle de pionnier en apprentissage profond, ce qui lui a valu le prix A. M. Turing 2018, le « prix Nobel de l’informatique », avec Geoffrey Hinton et Yann LeCun. Il est professeur titulaire à l’Université de Montréal, fondateur et conseiller scientifique de Mila – Institut québécois d’intelligence artificielle, et codirige en tant que senior fellow le programme Apprentissage automatique, apprentissage biologique de l'Institut canadien de recherches avancées (CIFAR). Il occupe également la fonction de conseiller spécial et directeur scientifique fondateur d’IVADO.

En 2018, il a été l’informaticien qui a recueilli le plus grand nombre de nouvelles citations au monde. En 2019, il s’est vu décerner le prestigieux prix Killam. Depuis 2022, il détient le plus grand facteur d’impact (h-index) en informatique à l’échelle mondiale. Il est fellow de la Royal Society de Londres et de la Société royale du Canada, et officier de l’Ordre du Canada.

Soucieux des répercussions sociales de l’IA et de l’objectif que l’IA bénéficie à tous, il a contribué activement à la Déclaration de Montréal pour un développement responsable de l’intelligence artificielle.

Étudiants actuels

Collaborateur·rice alumni - McGill
Collaborateur·rice alumni - UdeM
Collaborateur·rice de recherche - Cambridge University
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Collaborateur·rice alumni - Université du Québec à Rimouski
Visiteur de recherche indépendant
Co-superviseur⋅e :
Doctorat - UdeM
Collaborateur·rice alumni - UQAR
Collaborateur·rice de recherche - N/A
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Collaborateur·rice de recherche - KAIST
Stagiaire de recherche - UdeM
Co-superviseur⋅e :
Collaborateur·rice alumni - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Doctorat - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Stagiaire de recherche - UdeM
Stagiaire de recherche - UdeM
Doctorat
Doctorat - UdeM
Maîtrise recherche - UdeM
Co-superviseur⋅e :
Collaborateur·rice alumni - UdeM
Stagiaire de recherche - UdeM
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - UdeM
Collaborateur·rice alumni - UdeM
Collaborateur·rice alumni - UdeM
Collaborateur·rice alumni - UdeM
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni
Doctorat - UdeM
Collaborateur·rice alumni - UdeM
Collaborateur·rice alumni - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Collaborateur·rice de recherche - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Visiteur de recherche indépendant - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - Ying Wu Coll of Computing
Doctorat - University of Waterloo
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - Max-Planck-Institute for Intelligent Systems
Doctorat - UdeM
Postdoctorat - UdeM
Visiteur de recherche indépendant - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - UdeM
Maîtrise recherche - UdeM
Collaborateur·rice alumni - UdeM
Maîtrise recherche - UdeM
Visiteur de recherche indépendant - Technical University of Munich
Doctorat - UdeM
Co-superviseur⋅e :
Collaborateur·rice de recherche - RWTH Aachen University (Rheinisch-Westfälische Technische Hochschule Aachen)
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - UdeM
Collaborateur·rice alumni - UdeM
Collaborateur·rice de recherche
Collaborateur·rice de recherche - KAIST
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :

Publications

Open Problems in Technical AI Governance
Anka Reuel
Benjamin Bucknall
Stephen Casper
Timothy Fist
Lisa Soder
Onni Aarne
Lewis Hammond
Lujain Ibrahim
Alan Chan
Peter Wills
Markus Anderljung
Ben Garfinkel
Lennart Heim
Andrew Trask
Gabriel Mukobi
Rylan Schaeffer
Mauricio Baker
Sara Hooker
Irene Solaiman
Sasha Luccioni … (voir 14 de plus)
Alexandra Luccioni
Nitarshan Rajkumar
Nicolas Moës
Jeffrey Ladish
David Bau
Paul Bricman
Neel Guha
Jessica Newman
Tobin South
Alex Pentland
Sanmi Koyejo
Mykel Kochenderfer
Robert Trager
AI progress is creating a growing range of risks and opportunities, but it is often unclear how they should be navigated. In many cases, the… (voir plus) barriers and uncertainties faced are at least partly technical. Technical AI governance, referring to technical analysis and tools for supporting the effective governance of AI, seeks to address such challenges. It can help to (a) identify areas where intervention is needed, (b) identify and assess the efficacy of potential governance actions, and (c) enhance governance options by designing mechanisms for enforcement, incentivization, or compliance. In this paper, we explain what technical AI governance is, why it is important, and present a taxonomy and incomplete catalog of its open problems. This paper is intended as a resource for technical researchers or research funders looking to contribute to AI governance.
Assessing SAM for Tree Crown Instance Segmentation from Drone Imagery
Mélisande Teng
Arthur Ouaknine
Etienne Lalibert'e
Extendable Long-Horizon Planning via Hierarchical Multiscale Diffusion
Chang Chen
Hany Hamed
Doojin Baek
Taegu Kang
Sungjin Ahn
Extendable Long-Horizon Planning via Hierarchical Multiscale Diffusion
Chang Chen
Hany Hamed
Doojin Baek
Taegu Kang
Sungjin Ahn
A scalable gene network model of regulatory dynamics in single cells
Paul Bertin
Joseph D Viviano
Alejandro Tejada-Lapuerta
Weixu Wang
Stefan Bauer
Fabian J. Theis
Offline Model-Based Optimization: Comprehensive Review
Minsu Kim
Jiayao Gu
Ye Yuan
Taeyoung Yun
Zixuan Liu
Can Chen
Offline Model-Based Optimization: Comprehensive Review
Minsu Kim
Jiayao Gu
Ye Yuan
Taeyoung Yun
Zixuan Liu
Can Chen
Learning Decision Trees as Amortized Structure Inference
Mohammed Mahfoud
Ghait Boukachab
Michał Koziarski
Alex Hernandez-Garcia
Stefan Bauer
Nikolay Malkin
Mitigating Shortcut Learning with Diffusion Counterfactuals and Diverse Ensembles
Luca Scimeca
Alexander Rubinstein
Damien Teney
Seong Joon Oh
Armand Mihai Nicolicioiu
Spurious correlations in the data, where multiple cues are predictive of the target labels, often lead to a phenomenon known as shortcut lea… (voir plus)rning, where a model relies on erroneous, easy-to-learn cues while ignoring reliable ones. In this work, we propose
Outsourced diffusion sampling: Efficient posterior inference in latent spaces of generative models
Siddarth Venkatraman
Mohsin Hasan
Minsu Kim
Luca Scimeca
Marcin Sendera
Nikolay Malkin
Any well-behaved generative model over a variable …
Shaping Inductive Bias in Diffusion Models through Frequency-Based Noise Control
Thomas Jiralerspong
Berton Earnshaw
Jason Hartford
Luca Scimeca
Diffusion Probabilistic Models (DPMs) are powerful generative models that have achieved unparalleled success in a number of generative tasks… (voir plus). In this work, we aim to build inductive biases into the training and sampling of diffusion models to better accommodate the target distribution of the data to model. For topologically structured data, we devise a frequency-based noising operator to purposefully manipulate, and set, these inductive biases. We first show that appropriate manipulations of the noising forward process can lead DPMs to focus on particular aspects of the distribution to learn. We show that different datasets necessitate different inductive biases, and that appropriate frequency-based noise control induces increased generative performance compared to standard diffusion. Finally, we demonstrate the possibility of ignoring information at particular frequencies while learning. We show this in an image corruption and recovery task, where we train a DPM to recover the original target distribution after severe noise corruption.
Solving Bayesian inverse problems with diffusion priors and off-policy RL
Luca Scimeca
Siddarth Venkatraman
Moksh J. Jain
Minsu Kim
Marcin Sendera
Mohsin Hasan
Luke Rowe
Sarthak Mittal
Pablo Lemos
Alexandre Adam
Jarrid Rector-Brooks
Nikolay Malkin
This paper presents a practical application of Relative Trajectory Balance (RTB), a recently introduced off-policy reinforcement learning (R… (voir plus)L) objective that can asymptotically solve Bayesian inverse problems optimally. We extend the original work by using RTB to train conditional diffusion model posteriors from pretrained unconditional priors for challenging linear and non-linear inverse problems in vision, and science. We use the objective alongside techniques such as off-policy backtracking exploration to improve training. Importantly, our results show that existing training-free diffusion posterior methods struggle to perform effective posterior inference in latent space due to inherent biases.