Portrait de Yoshua Bengio

Yoshua Bengio

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur titulaire, Université de Montréal, Département d'informatique et de recherche opérationnelle
Fondateur et Conseiller scientifique, Équipe de direction
Sujets de recherche
Apprentissage automatique médical
Apprentissage de représentations
Apprentissage par renforcement
Apprentissage profond
Causalité
Modèles génératifs
Modèles probabilistes
Modélisation moléculaire
Neurosciences computationnelles
Raisonnement
Réseaux de neurones en graphes
Réseaux de neurones récurrents
Théorie de l'apprentissage automatique
Traitement du langage naturel

Biographie

*Pour toute demande média, veuillez écrire à medias@mila.quebec.

Pour plus d’information, contactez Marie-Josée Beauchamp, adjointe administrative à marie-josee.beauchamp@mila.quebec.

Reconnu comme une sommité mondiale en intelligence artificielle, Yoshua Bengio s’est surtout distingué par son rôle de pionnier en apprentissage profond, ce qui lui a valu le prix A. M. Turing 2018, le « prix Nobel de l’informatique », avec Geoffrey Hinton et Yann LeCun. Il est professeur titulaire à l’Université de Montréal, fondateur et conseiller scientifique de Mila – Institut québécois d’intelligence artificielle, et codirige en tant que senior fellow le programme Apprentissage automatique, apprentissage biologique de l'Institut canadien de recherches avancées (CIFAR). Il occupe également la fonction de conseiller spécial et directeur scientifique fondateur d’IVADO.

En 2018, il a été l’informaticien qui a recueilli le plus grand nombre de nouvelles citations au monde. En 2019, il s’est vu décerner le prestigieux prix Killam. Depuis 2022, il détient le plus grand facteur d’impact (h-index) en informatique à l’échelle mondiale. Il est fellow de la Royal Society de Londres et de la Société royale du Canada, et officier de l’Ordre du Canada.

Soucieux des répercussions sociales de l’IA et de l’objectif que l’IA bénéficie à tous, il a contribué activement à la Déclaration de Montréal pour un développement responsable de l’intelligence artificielle.

Étudiants actuels

Collaborateur·rice alumni - McGill
Collaborateur·rice alumni - UdeM
Collaborateur·rice de recherche - Cambridge University
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Visiteur de recherche indépendant
Co-superviseur⋅e :
Doctorat - UdeM
Collaborateur·rice de recherche - N/A
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Collaborateur·rice de recherche - KAIST
Stagiaire de recherche - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Doctorat - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Stagiaire de recherche - UdeM
Doctorat
Doctorat - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - UdeM
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Stagiaire de recherche - UdeM
Collaborateur·rice de recherche - UdeM
Collaborateur·rice alumni - UdeM
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - UdeM
Collaborateur·rice alumni - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni
Doctorat - UdeM
Collaborateur·rice alumni - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Collaborateur·rice de recherche - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Visiteur de recherche indépendant - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - Ying Wu Coll of Computing
Doctorat - University of Waterloo
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - Max-Planck-Institute for Intelligent Systems
Doctorat - UdeM
Postdoctorat - UdeM
Visiteur de recherche indépendant - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - UdeM
Maîtrise recherche - UdeM
Collaborateur·rice alumni - UdeM
Maîtrise recherche - UdeM
Visiteur de recherche indépendant - Technical University of Munich
Doctorat - UdeM
Co-superviseur⋅e :
Postdoctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - UdeM
Collaborateur·rice de recherche
Collaborateur·rice de recherche - KAIST
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :

Publications

Temporal Abstractions-Augmented Temporally Contrastive Learning: An Alternative to the Laplacian in RL
Akram Erraqabi
Marlos C. Machado
Harry Zhao
Mingde Zhao
Sainbayar Sukhbaatar
Alessandro Lazaric
Ludovic Denoyer
In reinforcement learning, the graph Laplacian has proved to be a valuable tool in the task-agnostic setting, with applications ranging from… (voir plus) skill discovery to reward shaping. Recently, learning the Laplacian representation has been framed as the optimization of a temporally-contrastive objective to overcome its computational limitations in large (or continuous) state spaces. However, this approach requires uniform access to all states in the state space, overlooking the exploration problem that emerges during the representation learning process. In this work, we propose an alternative method that is able to recover, in a non-uniform-prior setting, the expressiveness and the desired properties of the Laplacian representation. We do so by combining the representation learning with a skill-based covering policy, which provides a better training distribution to extend and refine the representation. We also show that a simple augmentation of the representation objective with the learned temporal abstractions improves dynamics-awareness and helps exploration. We find that our method succeeds as an alternative to the Laplacian in the non-uniform setting and scales to challenging continuous control environments. Finally, even if our method is not optimized for skill discovery, the learned skills can successfully solve difficult continuous navigation tasks with sparse rewards, where standard skill discovery approaches are no so effective.
FedILC: Weighted Geometric Mean and Invariant Gradient Covariance for Federated Learning on Non-IID Data
Mike He Zhu
Lena Nehale Ezzine
Dianbo Liu
(Private)-Retroactive Carbon Pricing [(P)ReCaP]: A Market-based Approach for Climate Finance and Risk Assessment
Prateek Arun Gupta
Dylan Radovic
M. Scholl
andrew williams
C. S. D. Witt
Tianyu Zhang
Yang Zhang
RetroGNN: Fast Estimation of Synthesizability for Virtual Screening and De Novo Design by Learning from Slow Retrosynthesis Software
Cheng-Hao Liu
Maksym Korablyov
Stanisław Jastrzębski
Paweł Włodarczyk-Pruszyński
Marwin Segler
E VALUATING G ENERALIZATION IN GF LOW N ETS FOR M OLECULE D ESIGN
Andrei Cristian Nica
Moksh J. Jain
Cheng-Hao Liu
Maksym Korablyov
Michael M. Bronstein
Deep learning bears promise for drug discovery problems such as de novo molecular design. Generating data to train such models is a costly a… (voir plus)nd time-consuming process, given the need for wet-lab experiments or expensive simulations. This problem is compounded by the notorious data-hungriness of machine learning algorithms. In small molecule generation the recently proposed GFlowNet method has shown good performance in generating diverse high-scoring candidates, and has the interesting advantage of being an off-policy offline method. Finding an appropriate generalization evaluation metric for such models, one predictive of the desired search performance (i.e. finding high-scoring diverse candidates), will help guide online data collection for such an algorithm. In this work, we develop techniques for evaluating GFlowNet performance on a test set, and identify the most promising metric for predicting generalization. We present empirical results on several small-molecule design tasks in drug discovery, for several GFlowNet training setups, and we find a metric strongly correlated with diverse high-scoring batch generation. This metric should be used to identify the best generative model from which to sample batches of molecules to be evaluated.
Inductive Biases for Relational Tasks
Current deep learning approaches have shown good in-distribution performance but struggle in out-of-distribution settings. This is especiall… (voir plus)y true in the case of tasks involving abstract relations like recognizing rules in sequences, as required in many intelligence tests. In contrast, our brains are remarkably flexible at such tasks, an attribute that is likely linked to anatomical constraints on computations. Inspired by this, recent work has explored how enforcing that relational representations remain distinct from sensory representations can help artificial systems. Building on this work, we further explore and formalize the advantages afforded by ``partitioned'' representations of relations and sensory details. We investigate inductive biases that ensure abstract relations are learned and represented distinctly from sensory data across several neural network architectures and show that they outperform existing architectures on out-of-distribution generalization for various relational tasks. These results show that partitioning relational representations from other information streams may be a simple way to augment existing network architectures' robustness when performing relational computations.
Object-centric Compositional Imagination for Visual Abstract Reasoning
Rim Assouel
Pau Rodriguez
Perouz Taslakian
David Vazquez
Like humans devoid of imagination, current machine learning systems lack the ability to adapt to new, unexpected situations by foreseeing th… (voir plus)em, which makes them unable to solve new tasks by analogical reasoning. In this work, we introduce a new compositional imagination framework that improves a model's ability to generalize. One of the key components of our framework is object-centric inductive biases that enables models to perceive the environment as a series of objects, properties, and transformations. By composing these key ingredients, it is possible to generate new unseen tasks that, when used to train the model, improve generalization. Experiments on a simplified version of the Abstraction and Reasoning Corpus (ARC) demonstrate the effectiveness of our framework.
A New Era: Intelligent Tutoring Systems Will Transform Online Learning for Millions
Francois St-Hilaire
Dung D. Vu
Antoine Frau
Nathan J. Burns
Farid Faraji
Joseph Potochny
Stephane Robert
Arnaud Roussel
Selene Zheng
Taylor Glazier
Junfel Vincent Romano
Robert Belfer
Muhammad Shayan
Ariella Smofsky
Tommy Delarosbil
Seulmin Ahn
Simon Eden-Walker
Kritika Sony
Ansona Onyi Ching
Sabina Elkins … (voir 11 de plus)
A. Stepanyan
Adela Matajova
Victor Chen
Hossein Sahraei
Robert Larson
N. Markova
Andrew Barkett
Iulian V. Serban
Ekaterina Kochmar
CACHE (Critical Assessment of Computational Hit-finding Experiments): A public–private partnership benchmarking initiative to enable the development of computational methods for hit-finding
Suzanne Ackloo
R. Al-Awar
Rommie Elizabeth Amaro
C. Arrowsmith
Hatylas F. Z. Azevedo
R. Batey
U. Betz
Cristian G. Bologa
J. Chodera
Wendy Cornell
Ian Dunham
G. Ecker
Kristina Edfeldt
A. Edwards
M. Gilson
Cláudia Regina Gordijo
G. Hessler
Alexander Hillisch
Anders C Hogner … (voir 19 de plus)
John Joseph Irwin
J. Jansen
Daniel Kuhn
Andrew R. Leach
Alpha A. Lee
Uta F. Lessel
J. Moult
Ingo Muegge
Tudor I. Oprea
Ben Perry
Patrick F. Riley
K. Saikatendu
Vijayaratnam Santhakumar
Matthieu Schapira
Cora Scholten
M. Todd
Masoud Vedadi
Andrea Volkamer
T. Willson
RECOVER: sequential model optimization platform for combination drug repurposing identifies novel synergistic compounds in vitro
Paul Bertin
Jarrid Rector-Brooks
Deepak Sharma
Thomas Gaudelet
Andrew Anighoro
Torsten Gross
Francisco Martínez-Peña
Eileen L. Tang
S. SurajM
Cristian Regep
Jeremy B.R. Hayter
Maksym Korablyov
N. Valiante
Almer M. van der Sloot
Mike Tyers
Charles E.S. Roberts
Michael M. Bronstein
Luke Lee Lairson
Jake P. Taylor-King
Tackling Climate Change with Machine Learning
Priya L. Donti
Lynn H. Kaack
Kelly Kochanski
Alexandre Lacoste
Kris Sankaran
Andrew Slavin Ross
Nikola Milojevic-Dupont
Natasha Jaques
Anna Waldman-Brown
Alexandra Luccioni
Evan David Sherwin
S. Karthik Mukkavilli
Konrad Paul Kording
Carla P. Gomes
Andrew Y. Ng
Demis Hassabis
John C. Platt
Felix Creutzig … (voir 2 de plus)
Jennifer T Chayes
Climate change is one of the greatest challenges facing humanity, and we, as machine learning (ML) experts, may wonder how we can help. Here… (voir plus) we describe how ML can be a powerful tool in reducing greenhouse gas emissions and helping society adapt to a changing climate. From smart grids to disaster management, we identify high impact problems where existing gaps can be filled by ML, in collaboration with other fields. Our recommendations encompass exciting research questions as well as promising business opportunities. We call on the ML community to join the global effort against climate change.
ClimateGAN: Raising Climate Change Awareness by Generating Images of Floods
Victor Schmidt
Alexandra Luccioni
Mélisande Teng
Tianyu Zhang
Alexia Reynaud
Sunand Raghupathi
Gautier Cosne
Adrien Juraver
Vahe Vardanyan
Alex Hernandez-Garcia
Climate change is a major threat to humanity, and the actions required to prevent its catastrophic consequences include changes in both poli… (voir plus)cy-making and individual behaviour. However, taking action requires understanding the effects of climate change, even though they may seem abstract and distant. Projecting the potential consequences of extreme climate events such as flooding in familiar places can help make the abstract impacts of climate change more concrete and encourage action. As part of a larger initiative to build a website that projects extreme climate events onto user-chosen photos, we present our solution to simulate photo-realistic floods on authentic images. To address this complex task in the absence of suitable training data, we propose ClimateGAN, a model that leverages both simulated and real data for unsupervised domain adaptation and conditional image generation. In this paper, we describe the details of our framework, thoroughly evaluate components of our architecture and demonstrate that our model is capable of robustly generating photo-realistic flooding.