Portrait de Yoshua Bengio

Yoshua Bengio

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur titulaire, Université de Montréal, Département d'informatique et de recherche opérationnelle
Fondateur et Conseiller scientifique, Équipe de direction
Sujets de recherche
Apprentissage automatique médical
Apprentissage de représentations
Apprentissage par renforcement
Apprentissage profond
Causalité
Modèles génératifs
Modèles probabilistes
Modélisation moléculaire
Neurosciences computationnelles
Raisonnement
Réseaux de neurones en graphes
Réseaux de neurones récurrents
Théorie de l'apprentissage automatique
Traitement du langage naturel

Biographie

*Pour toute demande média, veuillez écrire à medias@mila.quebec.

Pour plus d’information, contactez Marie-Josée Beauchamp, adjointe administrative à marie-josee.beauchamp@mila.quebec.

Reconnu comme une sommité mondiale en intelligence artificielle, Yoshua Bengio s’est surtout distingué par son rôle de pionnier en apprentissage profond, ce qui lui a valu le prix A. M. Turing 2018, le « prix Nobel de l’informatique », avec Geoffrey Hinton et Yann LeCun. Il est professeur titulaire à l’Université de Montréal, fondateur et conseiller scientifique de Mila – Institut québécois d’intelligence artificielle, et codirige en tant que senior fellow le programme Apprentissage automatique, apprentissage biologique de l'Institut canadien de recherches avancées (CIFAR). Il occupe également la fonction de conseiller spécial et directeur scientifique fondateur d’IVADO.

En 2018, il a été l’informaticien qui a recueilli le plus grand nombre de nouvelles citations au monde. En 2019, il s’est vu décerner le prestigieux prix Killam. Depuis 2022, il détient le plus grand facteur d’impact (h-index) en informatique à l’échelle mondiale. Il est fellow de la Royal Society de Londres et de la Société royale du Canada, et officier de l’Ordre du Canada.

Soucieux des répercussions sociales de l’IA et de l’objectif que l’IA bénéficie à tous, il a contribué activement à la Déclaration de Montréal pour un développement responsable de l’intelligence artificielle.

Étudiants actuels

Collaborateur·rice alumni - McGill
Collaborateur·rice alumni - UdeM
Collaborateur·rice de recherche - Cambridge University
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Visiteur de recherche indépendant - KAIST
Visiteur de recherche indépendant
Co-superviseur⋅e :
Doctorat - UdeM
Collaborateur·rice de recherche - N/A
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Collaborateur·rice de recherche - KAIST
Stagiaire de recherche - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Stagiaire de recherche - UdeM
Doctorat - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - UdeM
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - UdeM
Collaborateur·rice alumni - UdeM
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - UdeM
Collaborateur·rice alumni
Collaborateur·rice alumni - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Collaborateur·rice alumni - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Collaborateur·rice de recherche - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Visiteur de recherche indépendant - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - Ying Wu Coll of Computing
Doctorat - University of Waterloo
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - Max-Planck-Institute for Intelligent Systems
Stagiaire de recherche - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Postdoctorat - UdeM
Visiteur de recherche indépendant - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - UdeM
Maîtrise recherche - UdeM
Collaborateur·rice alumni - UdeM
Maîtrise recherche - UdeM
Visiteur de recherche indépendant - Technical University of Munich
Doctorat - UdeM
Co-superviseur⋅e :
Postdoctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - UdeM
Collaborateur·rice de recherche
Collaborateur·rice de recherche - KAIST
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :

Publications

HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide Resolution
Eric Nguyen
Michael Poli
Marjan Faizi
Armin W Thomas
Callum Birch-Sykes
Michael Wornow
Aman Patel
Clayton M. Rabideau
Stefano Massaroli
Stefano Ermon
Stephen Baccus
Christopher Re
Learning GFlowNets from partial episodes for improved convergence and stability
Kanika Madan
Jarrid Rector-Brooks
Maksym Korablyov
Moksh J. Jain
Andrei Cristian Nica
Tom Bosc
Nikolay Malkin
Generative flow networks (GFlowNets) are a family of algorithms for training a sequential sampler of discrete objects under an unnormalized … (voir plus)target density and have been successfully used for various probabilistic modeling tasks. Existing training objectives for GFlowNets are either local to states or transitions, or propagate a reward signal over an entire sampling trajectory. We argue that these alternatives represent opposite ends of a gradient bias-variance tradeoff and propose a way to exploit this tradeoff to mitigate its harmful effects. Inspired by the TD(
MixupE: Understanding and Improving Mixup from Directional Derivative Perspective
Vikas Verma
Yingtian Zou
Sarthak Mittal
Wai Hoh Tang
Hieu Pham
Juho Kannala
Arno Solin
Kenji Kawaguchi
Mixup is a popular data augmentation technique for training deep neural networks where additional samples are generated by linearly interpol… (voir plus)ating pairs of inputs and their labels. This technique is known to improve the generalization performance in many learning paradigms and applications. In this work, we first analyze Mixup and show that it implicitly regularizes infinitely many directional derivatives of all orders. Based on this new insight, we propose an improved version of Mixup, theoretically justified to deliver better generalization performance than the vanilla Mixup. To demonstrate the effectiveness of the proposed method, we conduct experiments across various domains such as images, tabular data, speech, and graphs. Our results show that the proposed method improves Mixup across multiple datasets using a variety of architectures, for instance, exhibiting an improvement over Mixup by 0.8% in ImageNet top-1 accuracy.
MixupE: Understanding and improving Mixup from directional derivative perspective
Vikas Verma
Yingtian Zou
Sarthak Mittal
Wai Hoh Tang
Hieu Pham
Juho Kannala
Arno Solin
Kenji Kawaguchi
Neural Causal Structure Discovery from Interventions
Nan Rosemary Ke
Olexa Bilaniuk
Anirudh Goyal
Stefan Bauer
Bernhard Schölkopf
Michael Curtis Mozer
Recent promising results have generated a surge of interest in continuous optimization methods for causal discovery from observational data.… (voir plus) However, there are theoretical limitations on the identifiability of underlying structures obtained solely from observational data. Interventional data, on the other hand, provides richer information about the underlying data-generating process. Nevertheless, extending and applying methods designed for observational data to include interventions is a challenging problem. To address this issue, we propose a general framework based on neural networks to develop models that incorporate both observational and interventional data. Notably, our method can handle the challenging and realistic scenario where the identity of the intervened upon variable is unknown. We evaluate our proposed approach in the context of graph recovery, both de novo and from a partially-known edge set. Our method achieves strong benchmark results on various structure learning tasks, including structure recovery of synthetic graphs as well as standard graphs from the Bayesian Network Repository
NEURAL NETWORK-BASED SOLVERS FOR PDES
M. Cameron
Ian G Goodfellow
(1) N (x; θ) = Ll+1 ○ σl ○Ll ○ σl−1 ○ . . . ○ σ1 ○L1. The symbol Lk denotes the k’s affine operator of the form Lk(x) = … (voir plus)Akx + bk, while σk denotes a nonlinear function called an activation function. The activation functions are chosen by the user. The matrices Ak and shift vectors (or bias vectors) bk are encoded into the argument θ: θ = {Ak, bk} l+1 k=1. The term training neural network means finding {Ak, bk} l+1 k=1 such that N (x; θ) satisfies certain conditions. These conditions are described by the loss function chosen by the user. For example, one might want the neural network to assume certain values fj at certain points xj , j = 1, . . . ,N . These points x are called the training data. In this case, a common choice of the loss function is the least squares error:
Stochastic Generative Flow Networks
Ling Pan
Dinghuai Zhang
Moksh J. Jain
Longbo Huang
Stochastic Generative Flow Networks
Ling Pan
Dinghuai Zhang
Moksh J. Jain
Longbo Huang
Generative Flow Networks (or GFlowNets for short) are a family of probabilistic agents that learn to sample complex combinatorial structures… (voir plus) through the lens of ``inference as control''. They have shown great potential in generating high-quality and diverse candidates from a given energy landscape. However, existing GFlowNets can be applied only to deterministic environments, and fail in more general tasks with stochastic dynamics, which can limit their applicability. To overcome this challenge, this paper introduces Stochastic GFlowNets, a new algorithm that extends GFlowNets to stochastic environments. By decomposing state transitions into two steps, Stochastic GFlowNets isolate environmental stochasticity and learn a dynamics model to capture it. Extensive experimental results demonstrate that Stochastic GFlowNets offer significant advantages over standard GFlowNets as well as MCMC- and RL-based approaches, on a variety of standard benchmarks with stochastic dynamics.
Supplementary Material for MixupE
Yingtian Zou
Vikas Verma
Sarthak Mittal
Wai Hoh Tang
Hieu Pham
Juho Kannala
Arno Solin
Kenji Kawaguchi
We denote by z = (x,y) the input and output pair where x ∈ X ⊆ R and y ∈ Y ⊆ R . Let fθ(x) ∈ R be the output of the logits (i.e.,… (voir plus) the last layer before the softmax or sigmoid) of the model parameterized by θ. We use l(θ, z) = h(fθ(x)) − yfθ(x) to denote the loss function. Let g(·) be the activation function. We use x(i) to index i-th element of the vector x and xj to represent j-th variable in a set. The notation list is:
Synergies between Disentanglement and Sparsity: Generalization and Identifiability in Multi-Task Learning
Sébastien Lachapelle
Tristan Deleu
Divyat Mahajan
Quentin Bertrand
Although disentangled representations are often said to be beneficial for downstream tasks, current empirical and theoretical understanding … (voir plus)is limited. In this work, we provide evidence that disentangled representations coupled with sparse base-predictors improve generalization. In the context of multi-task learning, we prove a new identifiability result that provides conditions under which maximally sparse base-predictors yield disentangled representations. Motivated by this theoretical result, we propose a practical approach to learn disentangled representations based on a sparsity-promoting bi-level optimization problem. Finally, we explore a meta-learning version of this algorithm based on group Lasso multiclass SVM base-predictors, for which we derive a tractable dual formulation. It obtains competitive results on standard few-shot classification benchmarks, while each task is using only a fraction of the learned representations.
Synergies between Disentanglement and Sparsity: Generalization and Identifiability in Multi-Task Learning
Sébastien Lachapelle
Tristan Deleu
Divyat Mahajan
Quentin Bertrand
Although disentangled representations are often said to be beneficial for downstream tasks, current empirical and theoretical understanding … (voir plus)is limited. In this work, we provide evidence that disentangled representations coupled with sparse task-specific predictors improve generalization. In the context of multi-task learning, we prove a new identifiability result that provides conditions under which maximally sparse predictors yield disentangled representations. Motivated by this theoretical result, we propose a practical approach to learn disentangled representations based on a sparsity-promoting bi-level optimization problem. Finally, we explore a meta-learning version of this algorithm based on group Lasso multiclass SVM predictors, for which we derive a tractable dual formulation. It obtains competitive results on standard few-shot classification benchmarks, while each task is using only a fraction of the learned representations.
A theory of continuous generative flow networks
Salem Lahlou
Tristan Deleu
Pablo Lemos
Dinghuai Zhang
Alexandra Volokhova
Alex Hernandez-Garcia
Lena Nehale Ezzine
Nikolay Malkin
Generative flow networks (GFlowNets) are amortized variational inference algorithms that are trained to sample from unnormalized target dist… (voir plus)ributions over compositional objects. A key limitation of GFlowNets until this time has been that they are restricted to discrete spaces. We present a theory for generalized GFlowNets, which encompasses both existing discrete GFlowNets and ones with continuous or hybrid state spaces, and perform experiments with two goals in mind. First, we illustrate critical points of the theory and the importance of various assumptions. Second, we empirically demonstrate how observations about discrete GFlowNets transfer to the continuous case and show strong results compared to non-GFlowNet baselines on several previously studied tasks. This work greatly widens the perspectives for the application of GFlowNets in probabilistic inference and various modeling settings.