Portrait de Yoshua Bengio

Yoshua Bengio

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur titulaire, Université de Montréal, Département d'informatique et de recherche opérationnelle
Directeur scientifique, Équipe de direction
Observateur, Conseil d'administration, Mila

Biographie

*Pour toute demande média, veuillez écrire à medias@mila.quebec.

Pour plus d’information, contactez Julie Mongeau, adjointe de direction à julie.mongeau@mila.quebec.

Reconnu comme une sommité mondiale en intelligence artificielle, Yoshua Bengio s’est surtout distingué par son rôle de pionnier en apprentissage profond, ce qui lui a valu le prix A. M. Turing 2018, le « prix Nobel de l’informatique », avec Geoffrey Hinton et Yann LeCun. Il est professeur titulaire à l’Université de Montréal, fondateur et directeur scientifique de Mila – Institut québécois d’intelligence artificielle, et codirige en tant que senior fellow le programme Apprentissage automatique, apprentissage biologique de l'Institut canadien de recherches avancées (CIFAR). Il occupe également la fonction de directeur scientifique d’IVADO.

En 2018, il a été l’informaticien qui a recueilli le plus grand nombre de nouvelles citations au monde. En 2019, il s’est vu décerner le prestigieux prix Killam. Depuis 2022, il détient le plus grand facteur d’impact (h-index) en informatique à l’échelle mondiale. Il est fellow de la Royal Society de Londres et de la Société royale du Canada, et officier de l’Ordre du Canada.

Soucieux des répercussions sociales de l’IA et de l’objectif que l’IA bénéficie à tous, il a contribué activement à la Déclaration de Montréal pour un développement responsable de l’intelligence artificielle.

Étudiants actuels

Maîtrise professionnelle - Université de Montréal
Co-superviseur⋅e :
Maîtrise professionnelle - Université de Montréal
Doctorat - Université de Montréal
Postdoctorat - Université de Montréal
Co-superviseur⋅e :
Postdoctorat - Université de Montréal
Doctorat - Université de Montréal
Collaborateur·rice de recherche - Université Paris-Saclay
Superviseur⋅e principal⋅e :
Maîtrise professionnelle - Université de Montréal
Visiteur de recherche indépendant - MIT
Doctorat - École Polytechnique Montréal Fédérale de Lausanne
Stagiaire de recherche - Université du Québec à Rimouski
Collaborateur·rice de recherche
Superviseur⋅e principal⋅e :
Doctorat - Université de Montréal
Superviseur⋅e principal⋅e :
Postdoctorat - Université de Montréal
Co-superviseur⋅e :
Maîtrise professionnelle - Université de Montréal
Doctorat - Université de Montréal
Co-superviseur⋅e :
Doctorat - Barcelona University
Doctorat - Université de Montréal
Superviseur⋅e principal⋅e :
Postdoctorat - Université de Montréal
Co-superviseur⋅e :
Maîtrise recherche - Université de Montréal
Doctorat - Université de Montréal
Stagiaire de recherche - Université de Montréal
Doctorat - Université de Montréal
Co-superviseur⋅e :
Stagiaire de recherche - UQAR
Collaborateur·rice alumni
Visiteur de recherche indépendant - Université de Montréal
Doctorat - Université de Montréal
Superviseur⋅e principal⋅e :
Stagiaire de recherche - McGill University
Visiteur de recherche indépendant - Université de Montréal
Doctorat - Université de Montréal
Co-superviseur⋅e :
Doctorat - Université de Montréal
Co-superviseur⋅e :
Maîtrise professionnelle - Université de Montréal
Stagiaire de recherche - Université de Montréal
Doctorat - Université de Montréal
Doctorat - Massachusetts Institute of Technology
Doctorat - Université de Montréal
Doctorat - Université de Montréal
Visiteur de recherche indépendant - Technical University Munich (TUM)
Visiteur de recherche indépendant - Hong Kong University of Science and Technology (HKUST)
DESS - Université de Montréal
Visiteur de recherche indépendant - UQAR
Postdoctorat - Université de Montréal
Doctorat - Université de Montréal
Stagiaire de recherche - Université de Montréal
Visiteur de recherche indépendant - Technical University of Munich
Stagiaire de recherche - Imperial College London
Doctorat - Université de Montréal
Co-superviseur⋅e :
Postdoctorat - Université de Montréal
Doctorat - McGill University
Superviseur⋅e principal⋅e :
Maîtrise professionnelle - Université de Montréal
Collaborateur·rice de recherche - Université de Montréal
Stagiaire de recherche - Université de Montréal
Stagiaire de recherche - Université de Montréal
Doctorat - Université de Montréal
Doctorat - Max-Planck-Institute for Intelligent Systems
Doctorat - McGill University
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - Université de Montréal
Maîtrise professionnelle - Université de Montréal
Doctorat - Université de Montréal
Visiteur de recherche indépendant - Université de Montréal
Collaborateur·rice alumni - Université de Montréal
Collaborateur·rice de recherche
Maîtrise professionnelle - Université de Montréal
Collaborateur·rice de recherche - Valence
Superviseur⋅e principal⋅e :
Doctorat - Université de Montréal
Doctorat - Université de Montréal
Superviseur⋅e principal⋅e :
Doctorat - Université de Montréal
Doctorat - Université de Montréal
Superviseur⋅e principal⋅e :
Stagiaire de recherche - Université de Montréal
Collaborateur·rice de recherche - Université de Montréal
Visiteur de recherche indépendant
Co-superviseur⋅e :
Postdoctorat - Université de Montréal
Stagiaire de recherche - McGill University
Maîtrise professionnelle - Université de Montréal
Collaborateur·rice de recherche
Superviseur⋅e principal⋅e :
Maîtrise recherche - Université de Montréal
Co-superviseur⋅e :
Doctorat - Université de Montréal
Maîtrise recherche - Université de Montréal
Doctorat - Université de Montréal
Collaborateur·rice de recherche - RWTH Aachen University (Rheinisch-Westfälische Technische Hochschule Aachen)
Superviseur⋅e principal⋅e :
Baccalauréat - Université de Montréal
Doctorat - Université de Montréal
Maîtrise professionnelle - Université de Montréal
Maîtrise professionnelle - Université de Montréal
Stagiaire de recherche - Université de Montréal
Doctorat - Université de Montréal
Superviseur⋅e principal⋅e :
Maîtrise professionnelle - Université de Montréal
Postdoctorat - Université de Montréal

Publications

A108 AUTOMATED DETECTION OF ILEOCECAL VALVE, APPENDICEAL ORIFICE, AND POLYP DURING COLONOSCOPY USING A DEEP LEARNING MODEL
Mahsa Taghiakbari
Sina Hamidi Ghalehjegh
E Jehanno
Tess Berthier
Lisa Di Jorio
Alan Barkun
Eric Deslandres
Simon Bouchard
Sacha Sidani
Daniel von Renteln
DEUP: Direct Epistemic Uncertainty Prediction
Moksh J. Jain
Salem Lahlou
Hadi Nekoei
Victor I Butoi
Paul Bertin
Jarrid Rector-Brooks
Maksym Korablyov
Epistemic Uncertainty is a measure of the lack of knowledge of a learner which diminishes with more evidence. While existing work focuses on… (voir plus) using the variance of the Bayesian posterior due to parameter uncertainty as a measure of epistemic uncertainty, we argue that this does not capture the part of lack of knowledge induced by model misspecification. We discuss how the excess risk, which is the gap between the generalization error of a predictor and the Bayes predictor, is a sound measure of epistemic uncertainty which captures the effect of model misspecification. We thus propose a principled framework for directly estimating the excess risk by learning a secondary predictor for the generalization error and subtracting an estimate of aleatoric uncertainty, i.e., intrinsic unpredictability. We discuss the merits of this novel measure of epistemic uncertainty, and highlight how it differs from variance-based measures of epistemic uncertainty and addresses its major pitfall. Our framework, Direct Epistemic Uncertainty Prediction (DEUP) is particularly interesting in interactive learning environments, where the learner is allowed to acquire novel examples in each round. Through a wide set of experiments, we illustrate how existing methods in sequential model optimization can be improved with epistemic uncertainty estimates from DEUP, and how DEUP can be used to drive exploration in reinforcement learning. We also evaluate the quality of uncertainty estimates from DEUP for probabilistic image classification and predicting synergies of drug combinations.
E-Forcing: Improving Autoregressive Models by Treating it as an Energy-Based One
Yezhen Wang
Tong Che
Bo Li
Kaitao Song
Hengzhi Pei
Dongsheng Li
Autoregressive generative models are commonly used to solve tasks involving sequential data. They have, however, been plagued by a slew of i… (voir plus)nherent flaws due to the intrinsic characteristics of chain-style conditional modeling (e.g., exposure bias or lack of long-range coherence), severely limiting their ability to model distributions properly. In this paper, we propose a unique method termed E-Forcing for training autoregressive generative models that takes advantage of a well-designed energy-based learning objective. By leveraging the extra degree of freedom of the softmax operation, we are allowed to make the autoregressive model itself an energy-based model for measuring the likelihood of input without introducing any extra parameters. Furthermore, we show that with the help of E-Forcing, we can alleviate the above flaws for autoregressive models. Extensive empirical results, covering numerous benchmarks demonstrate the effectiveness of the proposed approach.
Generative Augmented Flow Networks
Ling Pan
Dinghuai Zhang
Longbo Huang
The Generative Flow Network is a probabilistic framework where an agent learns a stochastic policy for object generation, such that the prob… (voir plus)ability of generating an object is proportional to a given reward function. Its effectiveness has been shown in discovering high-quality and diverse solutions, compared to reward-maximizing reinforcement learning-based methods. Nonetheless, GFlowNets only learn from rewards of the terminal states, which can limit its applicability. Indeed, intermediate rewards play a critical role in learning, for example from intrinsic motivation to provide intermediate feedback even in particularly challenging sparse reward tasks. Inspired by this, we propose Generative Augmented Flow Networks (GAFlowNets), a novel learning framework to incorporate intermediate rewards into GFlowNets. We specify intermediate rewards by intrinsic motivation to tackle the exploration problem in sparse reward environments. GAFlowNets can leverage edge-based and state-based intrinsic rewards in a joint way to improve exploration. Based on extensive experiments on the GridWorld task, we demonstrate the effectiveness and efficiency of GAFlowNet in terms of convergence, performance, and diversity of solutions. We further show that GAFlowNet is scalable to a more complex and large-scale molecule generation domain, where it achieves consistent and significant performance improvement.
GFlowNets and variational inference
Nikolay Malkin
Salem Lahlou
Tristan Deleu
Xu Ji
Edward J Hu
Katie E Everett
Dinghuai Zhang
This paper builds bridges between two families of probabilistic algorithms: (hierarchical) variational inference (VI), which is typically us… (voir plus)ed to model distributions over continuous spaces, and generative flow networks (GFlowNets), which have been used for distributions over discrete structures such as graphs. We demonstrate that, in certain cases, VI algorithms are equivalent to special cases of GFlowNets in the sense of equality of expected gradients of their learning objectives. We then point out the differences between the two families and show how these differences emerge experimentally. Notably, GFlowNets, which borrow ideas from reinforcement learning, are more amenable than VI to off-policy training without the cost of high gradient variance induced by importance sampling. We argue that this property of GFlowNets can provide advantages for capturing diversity in multimodal target distributions.
Latent Bottlenecked Attentive Neural Processes
Leo Feng
Hossein Hajimirsadeghi
Mohamed Osama Ahmed
Neural Processes (NPs) are popular methods in meta-learning that can estimate predictive uncertainty on target datapoints by conditioning on… (voir plus) a context dataset. Previous state-of-the-art method Transformer Neural Processes (TNPs) achieve strong performance but require quadratic computation with respect to the number of context datapoints, significantly limiting its scalability. Conversely, existing sub-quadratic NP variants perform significantly worse than that of TNPs. Tackling this issue, we propose Latent Bottlenecked Attentive Neural Processes (LBANPs), a new computationally efficient sub-quadratic NP variant, that has a querying computational complexity independent of the number of context datapoints. The model encodes the context dataset into a constant number of latent vectors on which self-attention is performed. When making predictions, the model retrieves higher-order information from the context dataset via multiple cross-attention mechanisms on the latent vectors. We empirically show that LBANPs achieve results competitive with the state-of-the-art on meta-regression, image completion, and contextual multi-armed bandits. We demonstrate that LBANPs can trade-off the computational cost and performance according to the number of latent vectors. Finally, we show LBANPs can scale beyond existing attention-based NP variants to larger dataset settings.
Latent State Marginalization as a Low-cost Approach for Improving Exploration
Dinghuai Zhang
Qinqing Zheng
Amy Zhang
Ricky T. Q. Chen
OCIM : Object-centric Compositional Imagination for Visual Abstract Reasoning
Rim Assouel
Pau Rodriguez
Perouz Taslakian
David Vazquez
A long-sought property of machine learning systems is the ability to compose learned concepts in novel ways that would enable them to m… (voir plus)ake sense of new situations. Such capacity for imagination -- a core aspect of human intelligence -- is not yet attained for machines. In this work, we show that object-centric inductive biases can be leveraged to derive an imagination-based learning framework that achieves compositional generalization on a series of tasks. Our method, denoted Object-centric Compositional IMagination (OCIM), decomposes visual reasoning tasks into a series of primitives applied to objects without using a domain-specific language. We show that these primitives can be recomposed to generate new imaginary tasks. By training on such imagined tasks, the model learns to reuse the previously-learned concepts to systematically generalize at test time. We test our model on a series of arithmetic tasks where the model has to infer the sequence of operations (programs) applied to a series of inputs. We find that imagination is key for the model to find the correct solution for unseen combinations of operations.
P REDICTIVE I NFERENCE WITH F EATURE C ONFORMAL P REDICTION
Jiaye Teng
Chuan Wen
Dinghuai Zhang
Yang Gao
Yang Yuan
Robust and Controllable Object-Centric Learning through Energy-based Models
Ruixiang ZHANG
Tong Che
Boris Ivanovic
Renhao Wang
Marco Pavone
Humans are remarkably good at understanding and reasoning about complex visual scenes. The capability of decomposing low-level observations … (voir plus)into discrete objects allows us to build a grounded abstract representation and identify the compositional structure of the world. Thus it is a crucial step for machine learning models to be capable of inferring objects and their properties from visual scene without explicit supervision. However, existing works on object-centric representation learning are either relying on tailor-made neural network modules or assuming sophisticated models of underlying generative and inference processes. In this work, we present EGO, a conceptually simple and general approach to learning object-centric representation through energy-based model. By forming a permutation-invariant energy function using vanilla attention blocks that are readily available in Transformers, we can infer object-centric latent variables via gradient-based MCMC methods where permutation equivariance is automatically guaranteed. We show that EGO can be easily integrated into existing architectures, and can effectively extract high-quality object-centric representations, leading to better segmentation accuracy and competitive downstream task performance. We empirically evaluate the robustness of the learned representation from EGO against distribution shift. Finally, we demonstrate the effectiveness of EGO in systematic compositional generalization, by recomposing learned energy functions for novel scene generation and manipulation.
Stateful active facilitator: Coordination and Environmental Heterogeneity in Cooperative Multi-Agent Reinforcement Learning
Dianbo Liu
Vedant Shah
Oussama Boussif
Cristian Meo
Anirudh Goyal
Tianmin Shu
Michael Curtis Mozer
Nicolas Heess
Leveraging the Third Dimension in Contrastive Learning
Sumukh K Aithal
Anirudh Goyal
Alex Lamb
Michael Curtis Mozer
Self-Supervised Learning (SSL) methods operate on unlabeled data to learn robust representations useful for downstream tasks. Most SSL metho… (voir plus)ds rely on augmentations obtained by transforming the 2D image pixel map. These augmentations ignore the fact that biological vision takes place in an immersive three-dimensional, temporally contiguous environment, and that low-level biological vision relies heavily on depth cues. Using a signal provided by a pretrained state-of-the-art monocular RGB-to-depth model (the \emph{Depth Prediction Transformer}, Ranftl et al., 2021), we explore two distinct approaches to incorporating depth signals into the SSL framework. First, we evaluate contrastive learning using an RGB+depth input representation. Second, we use the depth signal to generate novel views from slightly different camera positions, thereby producing a 3D augmentation for contrastive learning. We evaluate these two approaches on three different SSL methods -- BYOL, SimSiam, and SwAV -- using ImageNette (10 class subset of ImageNet), ImageNet-100 and ImageNet-1k datasets. We find that both approaches to incorporating depth signals improve the robustness and generalization of the baseline SSL methods, though the first approach (with depth-channel concatenation) is superior. For instance, BYOL with the additional depth channel leads to an increase in downstream classification accuracy from 85.3\% to 88.0\% on ImageNette and 84.1\% to 87.0\% on ImageNet-C.