Portrait de Yoshua Bengio

Yoshua Bengio

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur titulaire, Université de Montréal, Département d'informatique et de recherche opérationnelle
Fondateur et Conseiller scientifique, Équipe de direction
Sujets de recherche
Apprentissage automatique médical
Apprentissage de représentations
Apprentissage par renforcement
Apprentissage profond
Causalité
Modèles génératifs
Modèles probabilistes
Modélisation moléculaire
Neurosciences computationnelles
Raisonnement
Réseaux de neurones en graphes
Réseaux de neurones récurrents
Théorie de l'apprentissage automatique
Traitement du langage naturel

Biographie

*Pour toute demande média, veuillez écrire à medias@mila.quebec.

Pour plus d’information, contactez Marie-Josée Beauchamp, adjointe administrative à marie-josee.beauchamp@mila.quebec.

Reconnu comme une sommité mondiale en intelligence artificielle, Yoshua Bengio s’est surtout distingué par son rôle de pionnier en apprentissage profond, ce qui lui a valu le prix A. M. Turing 2018, le « prix Nobel de l’informatique », avec Geoffrey Hinton et Yann LeCun. Il est professeur titulaire à l’Université de Montréal, fondateur et conseiller scientifique de Mila – Institut québécois d’intelligence artificielle, et codirige en tant que senior fellow le programme Apprentissage automatique, apprentissage biologique de l'Institut canadien de recherches avancées (CIFAR). Il occupe également la fonction de conseiller spécial et directeur scientifique fondateur d’IVADO.

En 2018, il a été l’informaticien qui a recueilli le plus grand nombre de nouvelles citations au monde. En 2019, il s’est vu décerner le prestigieux prix Killam. Depuis 2022, il détient le plus grand facteur d’impact (h-index) en informatique à l’échelle mondiale. Il est fellow de la Royal Society de Londres et de la Société royale du Canada, et officier de l’Ordre du Canada.

Soucieux des répercussions sociales de l’IA et de l’objectif que l’IA bénéficie à tous, il a contribué activement à la Déclaration de Montréal pour un développement responsable de l’intelligence artificielle.

Étudiants actuels

Collaborateur·rice alumni - McGill
Collaborateur·rice alumni - UdeM
Collaborateur·rice de recherche - Cambridge University
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Visiteur de recherche indépendant - KAIST
Visiteur de recherche indépendant
Co-superviseur⋅e :
Doctorat - UdeM
Collaborateur·rice de recherche - N/A
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Collaborateur·rice de recherche - KAIST
Stagiaire de recherche - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Stagiaire de recherche - UdeM
Doctorat - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - UdeM
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - UdeM
Collaborateur·rice alumni - UdeM
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - UdeM
Collaborateur·rice alumni - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni
Doctorat - UdeM
Collaborateur·rice alumni - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Collaborateur·rice de recherche - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Visiteur de recherche indépendant - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - Ying Wu Coll of Computing
Doctorat - University of Waterloo
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - Max-Planck-Institute for Intelligent Systems
Stagiaire de recherche - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Postdoctorat - UdeM
Visiteur de recherche indépendant - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - UdeM
Maîtrise recherche - UdeM
Collaborateur·rice alumni - UdeM
Maîtrise recherche - UdeM
Visiteur de recherche indépendant - Technical University of Munich
Doctorat - UdeM
Co-superviseur⋅e :
Postdoctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - UdeM
Collaborateur·rice de recherche
Collaborateur·rice de recherche - KAIST
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :

Publications

Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Thomas Laurent
Xavier Bresson
Graph neural networks (GNNs) have become the standard toolkit for analyzing and learning from data on graphs. As the field grows, it becomes… (voir plus) critical to identify key architectures and validate new ideas that generalize to larger, more complex datasets. Unfortunately, it has been increasingly difficult to gauge the effectiveness of new models in the absence of a standardized benchmark with consistent experimental settings. In this paper, we introduce a reproducible GNN benchmarking framework, with the facility for researchers to add new models conveniently for arbitrary datasets. We demonstrate the usefulness of our framework by presenting a principled investigation into the recent Weisfeiler-Lehman GNNs (WL-GNNs) compared to message passing-based graph convolutional networks (GCNs) for a variety of graph tasks, i.e. graph regression/classification and node/link prediction, with medium-scale datasets.
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Thomas Laurent
Xavier Bresson
Graph neural networks (GNNs) have become the standard toolkit for analyzing and learning from data on graphs. As the field grows, it becomes… (voir plus) critical to identify key architectures and validate new ideas that generalize to larger, more complex datasets. Unfortunately, it has been increasingly difficult to gauge the effectiveness of new models in the absence of a standardized benchmark with consistent experimental settings. In this paper, we introduce a reproducible GNN benchmarking framework, with the facility for researchers to add new models conveniently for arbitrary datasets. We demonstrate the usefulness of our framework by presenting a principled investigation into the recent Weisfeiler-Lehman GNNs (WL-GNNs) compared to message passing-based graph convolutional networks (GCNs) for a variety of graph tasks, i.e. graph regression/classification and node/link prediction, with medium-scale datasets.
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Thomas Laurent
Xavier Bresson
Graph neural networks (GNNs) have become the standard toolkit for analyzing and learning from data on graphs. As the field grows, it becomes… (voir plus) critical to identify key architectures and validate new ideas that generalize to larger, more complex datasets. Unfortunately, it has been increasingly difficult to gauge the effectiveness of new models in the absence of a standardized benchmark with consistent experimental settings. In this paper, we introduce a reproducible GNN benchmarking framework, with the facility for researchers to add new models conveniently for arbitrary datasets. We demonstrate the usefulness of our framework by presenting a principled investigation into the recent Weisfeiler-Lehman GNNs (WL-GNNs) compared to message passing-based graph convolutional networks (GCNs) for a variety of graph tasks, i.e. graph regression/classification and node/link prediction, with medium-scale datasets.
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Thomas Laurent
Xavier Bresson
Graph neural networks (GNNs) have become the standard toolkit for analyzing and learning from data on graphs. As the field grows, it becomes… (voir plus) critical to identify key architectures and validate new ideas that generalize to larger, more complex datasets. Unfortunately, it has been increasingly difficult to gauge the effectiveness of new models in the absence of a standardized benchmark with consistent experimental settings. In this paper, we introduce a reproducible GNN benchmarking framework, with the facility for researchers to add new models conveniently for arbitrary datasets. We demonstrate the usefulness of our framework by presenting a principled investigation into the recent Weisfeiler-Lehman GNNs (WL-GNNs) compared to message passing-based graph convolutional networks (GCNs) for a variety of graph tasks, i.e. graph regression/classification and node/link prediction, with medium-scale datasets.
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Thomas Laurent
Xavier Bresson
Graph neural networks (GNNs) have become the standard toolkit for analyzing and learning from data on graphs. As the field grows, it becomes… (voir plus) critical to identify key architectures and validate new ideas that generalize to larger, more complex datasets. Unfortunately, it has been increasingly difficult to gauge the effectiveness of new models in the absence of a standardized benchmark with consistent experimental settings. In this paper, we introduce a reproducible GNN benchmarking framework, with the facility for researchers to add new models conveniently for arbitrary datasets. We demonstrate the usefulness of our framework by presenting a principled investigation into the recent Weisfeiler-Lehman GNNs (WL-GNNs) compared to message passing-based graph convolutional networks (GCNs) for a variety of graph tasks, i.e. graph regression/classification and node/link prediction, with medium-scale datasets.
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Thomas Laurent
Anh Tuan Luu
Xavier Bresson
Combining Spatial and Temporal Abstraction in Planning for Better Generalization
Mingde Zhao
Safa Alver
Harm van Seijen
Romain Laroche
Conditional Flow Matching: Simulation-Free Dynamic Optimal Transport
Alexander Tong
Nikolay Malkin
Guillaume Huguet
Yanlei Zhang
Jarrid Rector-Brooks
Kilian FATRAS
Conditional Flow Matching: Simulation-Free Dynamic Optimal Transport
Alexander Tong
Nikolay Malkin
Guillaume Huguet
Yanlei Zhang
Jarrid Rector-Brooks
Kilian FATRAS
Continuous normalizing flows (CNFs) are an attractive generative modeling technique, but they have thus far been held back by limitations i… (voir plus)n their simulation-based maximum likelihood training. In this paper, we introduce a new technique called conditional flow matching (CFM), a simulation-free training objective for CNFs. CFM features a stable regression objective like that used to train the stochastic flow in diffusion models but enjoys the efficient inference of deterministic flow models. In contrast to both diffusion models and prior CNF training algorithms, our CFM objec-tive does not require the source distribution to be Gaussian or require evaluation of its density. Based on this new objective, we also introduce optimal transport CFM (OT-CFM), which creates simpler flows that are more stable to train and lead to faster inference, as evaluated in our experiments. Training CNFs with CFM improves results on a variety of conditional and unconditional generation tasks such as inferring single cell dynamics, unsupervised image translation, and Schr ¨ odinger bridge inference. Code is available at https://github.com/atong01/ conditional-flow-matching .
Constant Memory Attentive Neural Processes
Leo Feng
Frederick Tung
Hossein Hajimirsadeghi
Mohamed Osama Ahmed
DynGFN: Bayesian Dynamic Causal Discovery using Generative Flow Networks
Lazar Atanackovic
Alexander Tong
Jason Hartford
Leo Jingyu Lee
Bo Wang
Learning the causal structure of observable variables is a central focus for scientific discovery. Bayesian causal discovery methods tackle… (voir plus) this problem by learning a posterior over the set of admissible graphs given our priors and observations. Existing methods primarily consider observations from static systems and assume the underlying causal structure takes the form of a directed acyclic graph (DAG). In settings with dynamic feedback mechanisms that regulate the trajectories of individual variables, this acyclicity assumption fails unless we account for time. We focus on learning Bayesian posteriors over cyclic graphs and treat causal discovery as a problem of sparse identification of a dynamical sys-tem. This imposes a natural temporal causal order between variables and captures cyclic feedback loops through time. Under this lens, we propose a new framework for Bayesian causal discovery for dynamical systems and present a novel generative flow network architecture (DynGFN) tailored for this task. Our results indicate that DynGFN learns posteriors that better encapsulate the distributions over admissible cyclic causal structures compared to counterpart state-of-the-art approaches.
GFlowNet Foundations
Salem Lahlou
Tristan Deleu
Edward J. Hu
Mo Tiwari