Portrait de Yoshua Bengio

Yoshua Bengio

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur titulaire, Université de Montréal, Département d'informatique et de recherche opérationnelle
Directeur scientifique, Équipe de direction
Sujets de recherche
Apprentissage automatique médical
Apprentissage de représentations
Apprentissage par renforcement
Apprentissage profond
Causalité
Modèles génératifs
Modèles probabilistes
Modélisation moléculaire
Neurosciences computationnelles
Raisonnement
Réseaux de neurones en graphes
Réseaux de neurones récurrents
Théorie de l'apprentissage automatique
Traitement du langage naturel

Biographie

*Pour toute demande média, veuillez écrire à medias@mila.quebec.

Pour plus d’information, contactez Marie-Josée Beauchamp, adjointe administrative à marie-josee.beauchamp@mila.quebec.

Reconnu comme une sommité mondiale en intelligence artificielle, Yoshua Bengio s’est surtout distingué par son rôle de pionnier en apprentissage profond, ce qui lui a valu le prix A. M. Turing 2018, le « prix Nobel de l’informatique », avec Geoffrey Hinton et Yann LeCun. Il est professeur titulaire à l’Université de Montréal, fondateur et directeur scientifique de Mila – Institut québécois d’intelligence artificielle, et codirige en tant que senior fellow le programme Apprentissage automatique, apprentissage biologique de l'Institut canadien de recherches avancées (CIFAR). Il occupe également la fonction de directeur scientifique d’IVADO.

En 2018, il a été l’informaticien qui a recueilli le plus grand nombre de nouvelles citations au monde. En 2019, il s’est vu décerner le prestigieux prix Killam. Depuis 2022, il détient le plus grand facteur d’impact (h-index) en informatique à l’échelle mondiale. Il est fellow de la Royal Society de Londres et de la Société royale du Canada, et officier de l’Ordre du Canada.

Soucieux des répercussions sociales de l’IA et de l’objectif que l’IA bénéficie à tous, il a contribué activement à la Déclaration de Montréal pour un développement responsable de l’intelligence artificielle.

Étudiants actuels

Collaborateur·rice alumni - McGill
Collaborateur·rice alumni - UdeM
Stagiaire de recherche - UdeM
Doctorat - UdeM
Collaborateur·rice alumni - Université du Québec à Rimouski
Visiteur de recherche indépendant
Co-superviseur⋅e :
Doctorat - UdeM
Collaborateur·rice alumni - UQAR
Collaborateur·rice de recherche - N/A
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Collaborateur·rice de recherche - KAIST
Collaborateur·rice alumni - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Doctorat - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Stagiaire de recherche - Barcelona University
Stagiaire de recherche - UdeM
Stagiaire de recherche - UdeM
Stagiaire de recherche
Postdoctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Maîtrise recherche - UdeM
Co-superviseur⋅e :
Collaborateur·rice alumni - UdeM
Collaborateur·rice de recherche - UdeM
Collaborateur·rice alumni - UdeM
Collaborateur·rice alumni - UdeM
Collaborateur·rice alumni
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - Imperial College London
Doctorat - UdeM
Collaborateur·rice alumni - UdeM
Collaborateur·rice alumni - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Collaborateur·rice de recherche - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Visiteur de recherche indépendant - UdeM
Collaborateur·rice de recherche - Ying Wu Coll of Computing
Doctorat - University of Waterloo
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - Max-Planck-Institute for Intelligent Systems
Doctorat - UdeM
Postdoctorat - UdeM
Visiteur de recherche indépendant - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - UdeM
Maîtrise recherche - UdeM
Collaborateur·rice alumni - UdeM
Stagiaire de recherche - UdeM
Maîtrise recherche - UdeM
Collaborateur·rice alumni
Visiteur de recherche indépendant - Technical University of Munich
Postdoctorat - Polytechnique
Co-superviseur⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Collaborateur·rice de recherche - RWTH Aachen University (Rheinisch-Westfälische Technische Hochschule Aachen)
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Collaborateur·rice alumni - UdeM
Collaborateur·rice de recherche
Collaborateur·rice de recherche - KAIST
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :

Publications

Supplementary Material for MixupE
Yingtian Zou
Vikas Verma
Sarthak Mittal
Wai Hoh Tang
Hieu Pham
Juho Kannala
Arno Solin
Kenji Kawaguchi
We denote by z = (x,y) the input and output pair where x ∈ X ⊆ R and y ∈ Y ⊆ R . Let fθ(x) ∈ R be the output of the logits (i.e.,… (voir plus) the last layer before the softmax or sigmoid) of the model parameterized by θ. We use l(θ, z) = h(fθ(x)) − yfθ(x) to denote the loss function. Let g(·) be the activation function. We use x(i) to index i-th element of the vector x and xj to represent j-th variable in a set. The notation list is:
Synergies between Disentanglement and Sparsity: Generalization and Identifiability in Multi-Task Learning
Sébastien Lachapelle
Tristan Deleu
Divyat Mahajan
Quentin Bertrand
Although disentangled representations are often said to be beneficial for downstream tasks, current empirical and theoretical understanding … (voir plus)is limited. In this work, we provide evidence that disentangled representations coupled with sparse base-predictors improve generalization. In the context of multi-task learning, we prove a new identifiability result that provides conditions under which maximally sparse base-predictors yield disentangled representations. Motivated by this theoretical result, we propose a practical approach to learn disentangled representations based on a sparsity-promoting bi-level optimization problem. Finally, we explore a meta-learning version of this algorithm based on group Lasso multiclass SVM base-predictors, for which we derive a tractable dual formulation. It obtains competitive results on standard few-shot classification benchmarks, while each task is using only a fraction of the learned representations.
Synergies between Disentanglement and Sparsity: Generalization and Identifiability in Multi-Task Learning
Sébastien Lachapelle
Tristan Deleu
Divyat Mahajan
Quentin Bertrand
Although disentangled representations are often said to be beneficial for downstream tasks, current empirical and theoretical understanding … (voir plus)is limited. In this work, we provide evidence that disentangled representations coupled with sparse task-specific predictors improve generalization. In the context of multi-task learning, we prove a new identifiability result that provides conditions under which maximally sparse predictors yield disentangled representations. Motivated by this theoretical result, we propose a practical approach to learn disentangled representations based on a sparsity-promoting bi-level optimization problem. Finally, we explore a meta-learning version of this algorithm based on group Lasso multiclass SVM predictors, for which we derive a tractable dual formulation. It obtains competitive results on standard few-shot classification benchmarks, while each task is using only a fraction of the learned representations.
A theory of continuous generative flow networks
Salem Lahlou
Tristan Deleu
Pablo Lemos
Dinghuai Zhang
Alexandra Volokhova
Alex Hernandez-Garcia
Lena Nehale Ezzine
Nikolay Malkin
A theory of continuous generative flow networks
Salem Lahlou
Tristan Deleu
Pablo Lemos
Dinghuai Zhang
Alexandra Volokhova
Alex Hernandez-Garcia
Lena Nehale Ezzine
Nikolay Malkin
Generative flow networks (GFlowNets) are amortized variational inference algorithms that are trained to sample from unnormalized target dist… (voir plus)ributions over compositional objects. A key limitation of GFlowNets until this time has been that they are restricted to discrete spaces. We present a theory for generalized GFlowNets, which encompasses both existing discrete GFlowNets and ones with continuous or hybrid state spaces, and perform experiments with two goals in mind. First, we illustrate critical points of the theory and the importance of various assumptions. Second, we empirically demonstrate how observations about discrete GFlowNets transfer to the continuous case and show strong results compared to non-GFlowNet baselines on several previously studied tasks. This work greatly widens the perspectives for the application of GFlowNets in probabilistic inference and various modeling settings.
Bayesian learning of Causal Structure and Mechanisms with GFlowNets and Variational Bayes
Mizu Nishikawa-Toomey
Tristan Deleu
Jithendaraa Subramanian
Bayesian causal structure learning aims to learn a posterior distribution over directed acyclic graphs (DAGs), and the mechanisms that defin… (voir plus)e the relationship between parent and child variables. By taking a Bayesian approach, it is possible to reason about the uncertainty of the causal model. The notion of modelling the uncertainty over models is particularly crucial for causal structure learning since the model could be unidentifiable when given only a finite amount of observational data. In this paper, we introduce a novel method to jointly learn the structure and mechanisms of the causal model using Variational Bayes, which we call Variational Bayes-DAG-GFlowNet (VBG). We extend the method of Bayesian causal structure learning using GFlowNets to learn not only the posterior distribution over the structure, but also the parameters of a linear-Gaussian model. Our results on simulated data suggest that VBG is competitive against several baselines in modelling the posterior over DAGs and mechanisms, while offering several advantages over existing methods, including the guarantee to sample acyclic graphs, and the flexibility to generalize to non-linear causal mechanisms.
Inductive biases for deep learning of higher-level cognition
Anirudh Goyal
Lookback for Learning to Branch
Prateek Gupta
Elias Boutros Khalil
Didier Chételat
Andrea Lodi
M. Pawan Kumar
Towards Scaling Difference Target Propagation by Learning Backprop Targets
Maxence Ernoult
Fabrice Normandin
Abhinav Moudgil
Sean Spinney
The development of biologically-plausible learning algorithms is important for understanding learning in the brain, but most of them fail to… (voir plus) scale-up to real-world tasks, limiting their potential as explanations for learning by real brains. As such, it is important to explore learning algorithms that come with strong theoretical guarantees and can match the performance of backpropagation (BP) on complex tasks. One such algorithm is Difference Target Propagation (DTP), a biologically-plausible learning algorithm whose close relation with Gauss-Newton (GN) optimization has been recently established. However, the conditions under which this connection rigorously holds preclude layer-wise training of the feedback pathway synaptic weights (which is more biologically plausible). Moreover, good alignment between DTP weight updates and loss gradients is only loosely guaranteed and under very specific conditions for the architecture being trained. In this paper, we propose a novel feedback weight training scheme that ensures both that DTP approximates BP and that layer-wise feedback weight training can be restored without sacrificing any theoretical guarantees. Our theory is corroborated by experimental results and we report the best performance ever achieved by DTP on CIFAR-10 and ImageNet 32
VIM: Variational Independent Modules for Video Prediction
Rim Assouel
Lluis Castrejon
Nicolas Ballas
We introduce a variational inference model called VIM, for Variational Independent Modules, for sequential data that learns and infers laten… (voir plus)t representations as a set of objects and discovers modular causal mechanisms over these objects. These mechanisms - which we call modules - are independently parametrized, define the stochastic transitions of entities and are shared across entities. At each time step, our model infers from a low-level input sequence a high-level sequence of categorical latent variables to select which transition modules to apply to which high-level object. We evaluate this model in video prediction tasks where the goal is to predict multi-modal future events given previous observations. We demonstrate empirically that VIM can model 2D visual sequences in an interpretable way and is able to identify the underlying dynamically instantiated mechanisms of the generation process. We additionally show that the learnt modules can be composed at test time to generalize to out-of-distribution observations.
On Neural Architecture Inductive Biases for Relational Tasks
Current deep learning approaches have shown good in-distribution generalization performance, but struggle with out-of-distribution generaliz… (voir plus)ation. This is especially true in the case of tasks involving abstract relations like recognizing rules in sequences, as we find in many intelligence tests. Recent work has explored how forcing relational representations to remain distinct from sensory representations, as it seems to be the case in the brain, can help artificial systems. Building on this work, we further explore and formalize the advantages afforded by 'partitioned' representations of relations and sensory details, and how this inductive bias can help recompose learned relational structure in newly encountered settings. We introduce a simple architecture based on similarity scores which we name Compositional Relational Network (CoRelNet). Using this model, we investigate a series of inductive biases that ensure abstract relations are learned and represented distinctly from sensory data, and explore their effects on out-of-distribution generalization for a series of relational psychophysics tasks. We find that simple architectural choices can outperform existing models in out-of-distribution generalization. Together, these results show that partitioning relational representations from other information streams may be a simple way to augment existing network architectures' robustness when performing out-of-distribution relational computations.
Temporal Abstractions-Augmented Temporally Contrastive Learning: An Alternative to the Laplacian in RL
Akram Erraqabi
Marlos C. Machado
Harry Zhao
Mingde Zhao
Sainbayar Sukhbaatar
Alessandro Lazaric
Ludovic Denoyer
In reinforcement learning, the graph Laplacian has proved to be a valuable tool in the task-agnostic setting, with applications ranging from… (voir plus) skill discovery to reward shaping. Recently, learning the Laplacian representation has been framed as the optimization of a temporally-contrastive objective to overcome its computational limitations in large (or continuous) state spaces. However, this approach requires uniform access to all states in the state space, overlooking the exploration problem that emerges during the representation learning process. In this work, we propose an alternative method that is able to recover, in a non-uniform-prior setting, the expressiveness and the desired properties of the Laplacian representation. We do so by combining the representation learning with a skill-based covering policy, which provides a better training distribution to extend and refine the representation. We also show that a simple augmentation of the representation objective with the learned temporal abstractions improves dynamics-awareness and helps exploration. We find that our method succeeds as an alternative to the Laplacian in the non-uniform setting and scales to challenging continuous control environments. Finally, even if our method is not optimized for skill discovery, the learned skills can successfully solve difficult continuous navigation tasks with sparse rewards, where standard skill discovery approaches are no so effective.