Portrait de Yoshua Bengio

Yoshua Bengio

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur titulaire, Université de Montréal, Département d'informatique et de recherche opérationnelle
Directeur scientifique, Équipe de direction
Sujets de recherche
Apprentissage automatique médical
Apprentissage de représentations
Apprentissage par renforcement
Apprentissage profond
Causalité
Modèles génératifs
Modèles probabilistes
Modélisation moléculaire
Neurosciences computationnelles
Raisonnement
Réseaux de neurones en graphes
Réseaux de neurones récurrents
Théorie de l'apprentissage automatique
Traitement du langage naturel

Biographie

*Pour toute demande média, veuillez écrire à medias@mila.quebec.

Pour plus d’information, contactez Marie-Josée Beauchamp, adjointe administrative à marie-josee.beauchamp@mila.quebec.

Reconnu comme une sommité mondiale en intelligence artificielle, Yoshua Bengio s’est surtout distingué par son rôle de pionnier en apprentissage profond, ce qui lui a valu le prix A. M. Turing 2018, le « prix Nobel de l’informatique », avec Geoffrey Hinton et Yann LeCun. Il est professeur titulaire à l’Université de Montréal, fondateur et directeur scientifique de Mila – Institut québécois d’intelligence artificielle, et codirige en tant que senior fellow le programme Apprentissage automatique, apprentissage biologique de l'Institut canadien de recherches avancées (CIFAR). Il occupe également la fonction de directeur scientifique d’IVADO.

En 2018, il a été l’informaticien qui a recueilli le plus grand nombre de nouvelles citations au monde. En 2019, il s’est vu décerner le prestigieux prix Killam. Depuis 2022, il détient le plus grand facteur d’impact (h-index) en informatique à l’échelle mondiale. Il est fellow de la Royal Society de Londres et de la Société royale du Canada, et officier de l’Ordre du Canada.

Soucieux des répercussions sociales de l’IA et de l’objectif que l’IA bénéficie à tous, il a contribué activement à la Déclaration de Montréal pour un développement responsable de l’intelligence artificielle.

Étudiants actuels

Collaborateur·rice alumni - McGill
Collaborateur·rice alumni - UdeM
Doctorat - UdeM
Collaborateur·rice alumni - Université du Québec à Rimouski
Visiteur de recherche indépendant
Co-superviseur⋅e :
Doctorat - UdeM
Collaborateur·rice alumni - UQAR
Collaborateur·rice de recherche - N/A
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Collaborateur·rice de recherche - KAIST
Collaborateur·rice alumni - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Doctorat - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Stagiaire de recherche - Barcelona University
Stagiaire de recherche - UdeM
Stagiaire de recherche - UdeM
Doctorat
Postdoctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Maîtrise recherche - UdeM
Co-superviseur⋅e :
Collaborateur·rice alumni - UdeM
Collaborateur·rice de recherche - UdeM
Collaborateur·rice alumni - UdeM
Collaborateur·rice alumni - UdeM
Collaborateur·rice alumni
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - Imperial College London
Doctorat - UdeM
Collaborateur·rice alumni - UdeM
Collaborateur·rice alumni - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Collaborateur·rice de recherche - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Visiteur de recherche indépendant - UdeM
Collaborateur·rice de recherche - Ying Wu Coll of Computing
Doctorat - University of Waterloo
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - Max-Planck-Institute for Intelligent Systems
Doctorat - UdeM
Postdoctorat - UdeM
Visiteur de recherche indépendant - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - UdeM
Maîtrise recherche - UdeM
Collaborateur·rice alumni - UdeM
Stagiaire de recherche - UdeM
Maîtrise recherche - UdeM
Collaborateur·rice alumni
Visiteur de recherche indépendant - Technical University of Munich
Postdoctorat - Polytechnique
Co-superviseur⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Collaborateur·rice de recherche - RWTH Aachen University (Rheinisch-Westfälische Technische Hochschule Aachen)
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Collaborateur·rice alumni - UdeM
Collaborateur·rice de recherche
Collaborateur·rice de recherche - KAIST
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :

Publications

Constant Memory Attentive Neural Processes
Leo Feng
Frederick Tung
Hossein Hajimirsadeghi
Mohamed Osama Ahmed
DynGFN: Bayesian Dynamic Causal Discovery using Generative Flow Networks
Lazar Atanackovic
Alexander Tong
Jason Hartford
Leo Jingyu Lee
Bo Wang
Learning the causal structure of observable variables is a central focus for scientific discovery. Bayesian causal discovery methods tackle… (voir plus) this problem by learning a posterior over the set of admissible graphs given our priors and observations. Existing methods primarily consider observations from static systems and assume the underlying causal structure takes the form of a directed acyclic graph (DAG). In settings with dynamic feedback mechanisms that regulate the trajectories of individual variables, this acyclicity assumption fails unless we account for time. We focus on learning Bayesian posteriors over cyclic graphs and treat causal discovery as a problem of sparse identification of a dynamical sys-tem. This imposes a natural temporal causal order between variables and captures cyclic feedback loops through time. Under this lens, we propose a new framework for Bayesian causal discovery for dynamical systems and present a novel generative flow network architecture (DynGFN) tailored for this task. Our results indicate that DynGFN learns posteriors that better encapsulate the distributions over admissible cyclic causal structures compared to counterpart state-of-the-art approaches.
GFlowNets for AI-Driven Scientific Discovery
Moksh J. Jain
Tristan Deleu
Jason Hartford
Cheng-Hao Liu
Alex Hernandez-Garcia
Tackling the most pressing problems for humanity, such as the climate crisis and the threat of global pandemics, requires accelerating the p… (voir plus)ace of scientific discovery. While science has traditionally relied...
GFlowOut: Dropout with Generative Flow Networks
Dianbo Liu
Moksh J. Jain
Bonaventure F. P. Dossou
Qianli Shen
Salem Lahlou
Anirudh Goyal
Nikolay Malkin
Chris Emezue
Dinghuai Zhang
Nadhir Hassen
Xu Ji
Kenji Kawaguchi
GFlowOut: Dropout with Generative Flow Networks
Dianbo Liu
Moksh J. Jain
Bonaventure F. P. Dossou
Qianli Shen
Salem Lahlou
Anirudh Goyal
Nikolay Malkin
Chris Emezue
Dinghuai Zhang
Nadhir Hassen
Xu Ji
Kenji Kawaguchi
HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide Resolution
Eric Nguyen
Michael Poli
Marjan Faizi
Armin W Thomas
Callum Birch-Sykes
Michael Wornow
Aman Patel
Clayton M. Rabideau
Stefano Massaroli
Stefano Ermon
Stephen Baccus
Christopher Re
Learning GFlowNets from partial episodes for improved convergence and stability
Kanika Madan
Jarrid Rector-Brooks
Maksym Korablyov
Emmanuel Bengio
Moksh J. Jain
Andrei Cristian Nica
Tom Bosc
Nikolay Malkin
Generative flow networks (GFlowNets) are a family of algorithms for training a sequential sampler of discrete objects under an unnormalized … (voir plus)target density and have been successfully used for various probabilistic modeling tasks. Existing training objectives for GFlowNets are either local to states or transitions, or propagate a reward signal over an entire sampling trajectory. We argue that these alternatives represent opposite ends of a gradient bias-variance tradeoff and propose a way to exploit this tradeoff to mitigate its harmful effects. Inspired by the TD(
MixupE: Understanding and improving Mixup from directional derivative perspective
Vikas Verma
Yingtian Zou
Sarthak Mittal
Wai Hoh Tang
Hieu Pham
Juho Kannala
Arno Solin
Kenji Kawaguchi
MixupE: Understanding and Improving Mixup from Directional Derivative Perspective
Vikas Verma
Yingtian Zou
Sarthak Mittal
Wai Hoh Tang
Hieu Pham
Juho Kannala
Arno Solin
Kenji Kawaguchi
Mixup is a popular data augmentation technique for training deep neural networks where additional samples are generated by linearly interpol… (voir plus)ating pairs of inputs and their labels. This technique is known to improve the generalization performance in many learning paradigms and applications. In this work, we first analyze Mixup and show that it implicitly regularizes infinitely many directional derivatives of all orders. Based on this new insight, we propose an improved version of Mixup, theoretically justified to deliver better generalization performance than the vanilla Mixup. To demonstrate the effectiveness of the proposed method, we conduct experiments across various domains such as images, tabular data, speech, and graphs. Our results show that the proposed method improves Mixup across multiple datasets using a variety of architectures, for instance, exhibiting an improvement over Mixup by 0.8% in ImageNet top-1 accuracy.
NEURAL NETWORK-BASED SOLVERS FOR PDES
M. Cameron
Ian G Goodfellow
(1) N (x; θ) = Ll+1 ○ σl ○Ll ○ σl−1 ○ . . . ○ σ1 ○L1. The symbol Lk denotes the k’s affine operator of the form Lk(x) = … (voir plus)Akx + bk, while σk denotes a nonlinear function called an activation function. The activation functions are chosen by the user. The matrices Ak and shift vectors (or bias vectors) bk are encoded into the argument θ: θ = {Ak, bk} l+1 k=1. The term training neural network means finding {Ak, bk} l+1 k=1 such that N (x; θ) satisfies certain conditions. These conditions are described by the loss function chosen by the user. For example, one might want the neural network to assume certain values fj at certain points xj , j = 1, . . . ,N . These points x are called the training data. In this case, a common choice of the loss function is the least squares error:
Stochastic Generative Flow Networks
Ling Pan
Dinghuai Zhang
Moksh J. Jain
Longbo Huang
Generative Flow Networks (or GFlowNets for short) are a family of probabilistic agents that learn to sample complex combinatorial structures… (voir plus) through the lens of ``inference as control''. They have shown great potential in generating high-quality and diverse candidates from a given energy landscape. However, existing GFlowNets can be applied only to deterministic environments, and fail in more general tasks with stochastic dynamics, which can limit their applicability. To overcome this challenge, this paper introduces Stochastic GFlowNets, a new algorithm that extends GFlowNets to stochastic environments. By decomposing state transitions into two steps, Stochastic GFlowNets isolate environmental stochasticity and learn a dynamics model to capture it. Extensive experimental results demonstrate that Stochastic GFlowNets offer significant advantages over standard GFlowNets as well as MCMC- and RL-based approaches, on a variety of standard benchmarks with stochastic dynamics.
Stochastic Generative Flow Networks
Ling Pan
Dinghuai Zhang
Moksh J. Jain
Longbo Huang