Portrait de Doina Precup

Doina Precup

Membre académique principal
Chaire en IA Canada-CIFAR
Professeure agrégée, McGill University, École d'informatique
Chef d'équipe de recherche, Google DeepMind
Sujets de recherche
Apprentissage automatique médical
Apprentissage par renforcement
Modèles probabilistes
Modélisation moléculaire
Raisonnement

Biographie

Doina Precup enseigne à l'Université McGill tout en menant des recherches fondamentales sur l'apprentissage par renforcement, notamment les applications de l'IA dans des domaines ayant des répercussions sociales, tels que les soins de santé. Elle s'intéresse à la prise de décision automatique dans des situations d'incertitude élevée.

Elle est membre de l'Institut canadien de recherches avancées (CIFAR) et de l'Association pour l'avancement de l'intelligence artificielle (AAAI), et dirige le bureau montréalais de DeepMind.

Ses spécialités sont les suivantes : intelligence artificielle, apprentissage machine, apprentissage par renforcement, raisonnement et planification sous incertitude, applications.

Étudiants actuels

Doctorat - McGill
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Maîtrise recherche - McGill
Co-superviseur⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :
Maîtrise recherche - McGill
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - McGill
Stagiaire de recherche - UdeM
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - McGill
Maîtrise recherche - McGill
Postdoctorat - McGill
Maîtrise recherche - McGill
Collaborateur·rice alumni - McGill
Baccalauréat - McGill
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - McGill
Maîtrise recherche - McGill
Superviseur⋅e principal⋅e :
Maîtrise recherche - McGill
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Doctorat - McGill
Co-superviseur⋅e :
Stagiaire de recherche - McGill
Maîtrise recherche - McGill
Co-superviseur⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Doctorat - McGill
Co-superviseur⋅e :

Publications

Efficient Planning under Partial Observability with Unnormalized Q Functions and Spectral Learning
Value Preserving State-Action Abstractions
David Abel
Nathan Umbanhowar
Dilip Arumugam
Michael L. Littman
Abstraction can improve the sample efficiency of reinforcement learning. However, the process of abstraction inherently discards information… (voir plus), potentially compromising an agent’s ability to represent high-value policies. To mitigate this, we here introduce combinations of state abstractions and options that are guaranteed to preserve the representation of near-optimal policies. We first define φ-relative options, a general formalism for analyzing the value loss of options paired with a state abstraction, and present necessary and sufficient conditions for φ-relative options to preserve near-optimal behavior in any finite Markov Decision Process. We further show that, under appropriate assumptions, φ-relative options can be composed to induce hierarchical abstractions that are also guaranteed to represent high-value policies.ion can improve the sample efficiency of reinforcement learning. However, the process of abstraction inherently discards information, potentially compromising an agent’s ability to represent high-value policies. To mitigate this, we here introduce combinations of state abstractions and options that are guaranteed to preserve the representation of near-optimal policies. We first define φ-relative options, a general formalism for analyzing the value loss of options paired with a state abstraction, and present necessary and sufficient conditions for φ-relative options to preserve near-optimal behavior in any finite Markov Decision Process. We further show that, under appropriate assumptions, φ-relative options can be composed to induce hierarchical abstractions that are also guaranteed to represent high-value policies.
Value Preserving State-Action Abstractions
David Abel
Nathan Umbanhowar
Dilip Arumugam
Michael L. Littman
Abstraction can improve the sample efficiency of reinforcement learning. However, the process of abstraction inherently discards information… (voir plus), potentially compromising an agent’s ability to represent high-value policies. To mitigate this, we here introduce combinations of state abstractions and options that are guaranteed to preserve the representation of near-optimal policies. We first define φ-relative options, a general formalism for analyzing the value loss of options paired with a state abstraction, and present necessary and sufficient conditions for φ-relative options to preserve near-optimal behavior in any finite Markov Decision Process. We further show that, under appropriate assumptions, φ-relative options can be composed to induce hierarchical abstractions that are also guaranteed to represent high-value policies.ion can improve the sample efficiency of reinforcement learning. However, the process of abstraction inherently discards information, potentially compromising an agent’s ability to represent high-value policies. To mitigate this, we here introduce combinations of state abstractions and options that are guaranteed to preserve the representation of near-optimal policies. We first define φ-relative options, a general formalism for analyzing the value loss of options paired with a state abstraction, and present necessary and sufficient conditions for φ-relative options to preserve near-optimal behavior in any finite Markov Decision Process. We further show that, under appropriate assumptions, φ-relative options can be composed to induce hierarchical abstractions that are also guaranteed to represent high-value policies.
Gifting in Multi-Agent Reinforcement Learning (Student Abstract)
Andrei-Stefan Lupu
This work performs a first study on multi-agent reinforcement learning with deliberate reward passing between agents. We empirically demonst… (voir plus)rate that such mechanics can greatly improve the learning progression in a resource appropriation setting and provide a preliminary discussion of the complex effects of gifting on the learning dynamics.
Options of Interest: Temporal Abstraction with Interest Functions
Martin Klissarov
Maxime Chevalier-Boisvert
Temporal abstraction refers to the ability of an agent to use behaviours of controllers which act for a limited, variable amount of time. Th… (voir plus)e options framework describes such behaviours as consisting of a subset of states in which they can initiate, an internal policy and a stochastic termination condition. However, much of the subsequent work on option discovery has ignored the initiation set, because of difficulty in learning it from data. We provide a generalization of initiation sets suitable for general function approximation, by defining an interest function associated with an option. We derive a gradient-based learning algorithm for interest functions, leading to a new interest-option-critic architecture. We investigate how interest functions can be leveraged to learn interpretable and reusable temporal abstractions. We demonstrate the efficacy of the proposed approach through quantitative and qualitative results, in both discrete and continuous environments.
Learning to cooperate: Emergent communication in multi-agent navigation
Ivana Kaji'c
Eser Aygün
Emergent communication in artificial agents has been studied to understand language evolution, as well as to develop artificial systems that… (voir plus) learn to communicate with humans. We show that agents performing a cooperative navigation task in various gridworld environments learn an interpretable communication protocol that enables them to efficiently, and in many cases, optimally, solve the task. An analysis of the agents' policies reveals that emergent signals spatially cluster the state space, with signals referring to specific locations and spatial directions such as "left", "up", or "upper left room". Using populations of agents, we show that the emergent protocol has basic compositional structure, thus exhibiting a core property of natural language.
A Distributional Analysis of Sampling-Based Reinforcement Learning Algorithms
We present a distributional approach to theoretical analyses of reinforcement learning algorithms for constant step-sizes. We demonstrate it… (voir plus)s effectiveness by presenting simple and unified proofs of convergence for a variety of commonly-used methods. We show that value-based methods such as TD(
Multiple Kernel Learning-Based Transfer Regression for Electric Load Forecasting
Di Wu
Boyu Wang
Benoit Boulet
Electric load forecasting, especially short-term load forecasting (STLF), is becoming more and more important for power system operation. We… (voir plus) propose to use multiple kernel learning (MKL) for residential electric load forecasting which provides more flexibility than traditional kernel methods. Computation time is an important issue for short-term forecasting, especially for energy scheduling. However, conventional MKL methods usually lead to complicated optimization problems. Another practical issue for this application is that there may be a very limited amount of data available to train a reliable forecasting model for a new house, while at the same time we may have historical data collected from other houses which can be leveraged to improve the prediction performance for the new house. In this paper, we propose a boosting-based framework for MKL regression to deal with the aforementioned issues for STLF. In particular, we first adopt boosting to learn an ensemble of multiple kernel regressors and then extend this framework to the context of transfer learning. Furthermore, we consider two different settings: homogeneous transfer learning and heterogeneous transfer learning. Experimental results on residential data sets demonstrate that forecasting error can be reduced by a large margin with the knowledge learned from other houses.
Policy Evaluation Networks
Jean Harb
Tom Schaul
Provably efficient reconstruction of policy networks
Recent research has shown that learning poli-cies parametrized by large neural networks can achieve significant success on challenging reinf… (voir plus)orcement learning problems. However, when memory is limited, it is not always possible to store such models exactly for inference, and com-pressing the policy into a compact representation might be necessary. We propose a general framework for policy representation, which reduces this problem to finding a low-dimensional embedding of a given density function in a separable inner product space. Our framework allows us to de-rive strong theoretical guarantees, controlling the error of the reconstructed policies. Such guaran-tees are typically lacking in black-box models, but are very desirable in risk-sensitive tasks. Our experimental results suggest that the reconstructed policies can use less than 10%of the number of parameters in the original networks, while incurring almost no decrease in rewards.
Representation of Reinforcement Learning Policies in Reproducing Kernel Hilbert Spaces.
We propose a general framework for policy representation for reinforcement learning tasks. This framework involves finding a low-dimensional… (voir plus) embedding of the policy on a reproducing kernel Hilbert space (RKHS). The usage of RKHS based methods allows us to derive strong theoretical guarantees on the expected return of the reconstructed policy. Such guarantees are typically lacking in black-box models, but are very desirable in tasks requiring stability. We conduct several experiments on classic RL domains. The results confirm that the policies can be robustly embedded in a low-dimensional space while the embedded policy incurs almost no decrease in return.
A Distributional Analysis of Sampling-Based Reinforcement Learning Algorithms