Portrait de Doina Precup

Doina Precup

Membre académique principal
Chaire en IA Canada-CIFAR
Professeure agrégée, McGill University, École d'informatique
Chef d'équipe de recherche, Google DeepMind
Sujets de recherche
Apprentissage automatique médical
Apprentissage par renforcement
Modèles probabilistes
Modélisation moléculaire
Raisonnement

Biographie

Doina Precup enseigne à l'Université McGill tout en menant des recherches fondamentales sur l'apprentissage par renforcement, notamment les applications de l'IA dans des domaines ayant des répercussions sociales, tels que les soins de santé. Elle s'intéresse à la prise de décision automatique dans des situations d'incertitude élevée.

Elle est membre de l'Institut canadien de recherches avancées (CIFAR) et de l'Association pour l'avancement de l'intelligence artificielle (AAAI), et dirige le bureau montréalais de DeepMind.

Ses spécialités sont les suivantes : intelligence artificielle, apprentissage machine, apprentissage par renforcement, raisonnement et planification sous incertitude, applications.

Étudiants actuels

Doctorat - McGill
Co-superviseur⋅e :
Collaborateur·rice alumni - McGill
Maîtrise recherche - McGill
Co-superviseur⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :
Maîtrise recherche - McGill
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - McGill
Co-superviseur⋅e :
Stagiaire de recherche - UdeM
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - McGill
Collaborateur·rice alumni - McGill
Maîtrise recherche - McGill
Collaborateur·rice alumni - McGill
Doctorat - Polytechnique
Postdoctorat - McGill
Maîtrise recherche - McGill
Collaborateur·rice alumni - McGill
Baccalauréat - McGill
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - McGill
Collaborateur·rice alumni - McGill
Maîtrise recherche - McGill
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - McGill
Co-superviseur⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Stagiaire de recherche - McGill
Maîtrise recherche - McGill
Co-superviseur⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - McGill
Collaborateur·rice alumni - McGill
Co-superviseur⋅e :

Publications

Revisiting Heterophily For Graph Neural Networks
Qincheng Lu
Jiaqi Zhu
Mingde Zhao
Xiao-Wen Chang
Graph Neural Networks (GNNs) extend basic Neural Networks (NNs) by using graph structures based on the relational inductive bias (homophily … (voir plus)assumption). While GNNs have been commonly believed to outperform NNs in real-world tasks, recent work has identified a non-trivial set of datasets where their performance compared to NNs is not satisfactory. Heterophily has been considered the main cause of this empirical observation and numerous works have been put forward to address it. In this paper, we first revisit the widely used homophily metrics and point out that their consideration of only graph-label consistency is a shortcoming. Then, we study heterophily from the perspective of post-aggregation node similarity and define new homophily metrics, which are potentially advantageous compared to existing ones. Based on this investigation, we prove that some harmful cases of heterophily can be effectively addressed by local diversification operation. Then, we propose the Adaptive Channel Mixing (ACM), a framework to adaptively exploit aggregation, diversification and identity channels node-wisely to extract richer localized information for diverse node heterophily situations. ACM is more powerful than the commonly used uni-channel framework for node classification tasks on heterophilic graphs and is easy to be implemented in baseline GNN layers. When evaluated on 10 benchmark node classification tasks, ACM-augmented baselines consistently achieve significant performance gain, exceeding state-of-the-art GNNs on most tasks without incurring significant computational burden.
Towards Painless Policy Optimization for Constrained MDPs
We study policy optimization in an infinite horizon, …
Importance of Empirical Sample Complexity Analysis for Offline Reinforcement Learning
Single-Shot Pruning for Offline Reinforcement Learning
Riyasat Ohib
Sergey Plis
Flexible Option Learning
Flexible Option Learning
Flexible Option Learning
Gradient Starvation: A Learning Proclivity in Neural Networks
We identify and formalize a fundamental gradient descent phenomenon resulting in a learning proclivity in over-parameterized neural networks… (voir plus). Gradient Starvation arises when cross-entropy loss is minimized by capturing only a subset of features relevant for the task, despite the presence of other predictive features that fail to be discovered. This work provides a theoretical explanation for the emergence of such feature imbalance in neural networks. Using tools from Dynamical Systems theory, we identify simple properties of learning dynamics during gradient descent that lead to this imbalance, and prove that such a situation can be expected given certain statistical structure in training data. Based on our proposed formalism, we develop guarantees for a novel regularization method aimed at decoupling feature learning dynamics, improving accuracy and robustness in cases hindered by gradient starvation. We illustrate our findings with simple and real-world out-of-distribution (OOD) generalization experiments.
Estimating treatment effect for individuals with progressive multiple sclerosis using deep learning
JR Falet
Joshua D. Durso-Finley
Jan Schroeter
Francesca Bovis
Maria-Pia Sormani
Douglas Arnold
Reward is enough
David Silver
Satinder Singh
Richard S. Sutton
Reward is enough
David Silver
Satinder Singh
Richard S. Sutton
Reward is enough
David Silver
Satinder Singh
Richard S. Sutton