Portrait de Doina Precup

Doina Precup

Membre académique principal
Chaire en IA Canada-CIFAR
Professeure agrégée, McGill University, École d'informatique
Chef d'équipe de recherche, Google DeepMind
Sujets de recherche
Apprentissage automatique médical
Apprentissage par renforcement
Modèles probabilistes
Modélisation moléculaire
Raisonnement

Biographie

Doina Precup enseigne à l'Université McGill tout en menant des recherches fondamentales sur l'apprentissage par renforcement, notamment les applications de l'IA dans des domaines ayant des répercussions sociales, tels que les soins de santé. Elle s'intéresse à la prise de décision automatique dans des situations d'incertitude élevée.

Elle est membre de l'Institut canadien de recherches avancées (CIFAR) et de l'Association pour l'avancement de l'intelligence artificielle (AAAI), et dirige le bureau montréalais de DeepMind.

Ses spécialités sont les suivantes : intelligence artificielle, apprentissage machine, apprentissage par renforcement, raisonnement et planification sous incertitude, applications.

Étudiants actuels

Doctorat - McGill
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Maîtrise recherche - McGill
Co-superviseur⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :
Maîtrise recherche - McGill
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - McGill
Stagiaire de recherche - UdeM
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - McGill
Maîtrise recherche - McGill
Postdoctorat - McGill
Maîtrise recherche - McGill
Collaborateur·rice alumni - McGill
Baccalauréat - McGill
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - McGill
Maîtrise recherche - McGill
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - McGill
Co-superviseur⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Stagiaire de recherche - McGill
Maîtrise recherche - McGill
Co-superviseur⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Collaborateur·rice alumni - McGill
Co-superviseur⋅e :

Publications

Towards Continual Reinforcement Learning: A Review and Perspectives
Complete the Missing Half: Augmenting Aggregation Filtering with Diversification for Graph Convolutional Networks
Mingde Zhao
Chenqing Hua
Xiao-Wen Chang
The core operation of current Graph Neural Networks (GNNs) is the aggregation enabled by the graph Laplacian or message passing, which filte… (voir plus)rs the neighborhood node information. Though effective for various tasks, in this paper, we show that they are potentially a problematic factor underlying all GNN methods for learning on certain datasets, as they force the node representations similar, making the nodes gradually lose their identity and become indistinguishable. Hence, we augment the aggregation operations with their dual, i.e. diversification operators that make the node more distinct and preserve the identity. Such augmentation replaces the aggregation with a two-channel filtering process that, in theory, is beneficial for enriching the node representations. In practice, the proposed two-channel filters can be easily patched on existing GNN methods with diverse training strategies, including spectral and spatial (message passing) methods. In the experiments, we observe desired characteristics of the models and significant performance boost upon the baselines on 9 node classification tasks.
When Do We Need GNN for Node Classification?
Chenqing Hua
Qincheng Lu
Jiaqi Zhu
Xiao-Wen Chang
When Do We Need GNN for Node Classification?
Chenqing Hua
Qincheng Lu
Jiaqi Zhu
Xiao-Wen Chang
Low-Rank Representation of Reinforcement Learning Policies
We propose a general framework for policy representation for reinforcement learning tasks. This framework involves finding a low-dimensional… (voir plus) embedding of the policy on a reproducing kernel Hilbert space (RKHS). The usage of RKHS based methods allows us to derive strong theoretical guarantees on the expected return of the reconstructed policy. Such guarantees are typically lacking in black-box models, but are very desirable in tasks requiring stability and convergence guarantees. We conduct several experiments on classic RL domains. The results confirm that the policies can be robustly represented in a low-dimensional space while the embedded policy incurs almost no decrease in returns.
Simulating Human Gaze with Neural Visual Attention
Bjoern Eskofier
Dario Zanca
The Paradox of Choice: On the Role of Attention in Hierarchical Reinforcement Learning
Andrei Cristian Nica
Decision-making AI agents are often faced with two important challenges: the depth of the planning horizon, and the branching factor due to … (voir plus)having many choices. Hierarchical reinforcement learning methods aim to solve the first problem, by providing shortcuts that skip over multiple time steps. To cope with the breadth, it is desirable to restrict the agent's attention at each step to a reasonable number of possible choices. The concept of affordances (Gibson, 1977) suggests that only certain actions are feasible in certain states. In this work, we first characterize "affordances" as a "hard" attention mechanism that strictly limits the available choices of temporally extended options. We then investigate the role of hard versus soft attention in training data collection, abstract value learning in long-horizon tasks, and handling a growing number of choices. To this end, we present an online, model-free algorithm to learn affordances that can be used to further learn subgoal options. Finally, we identify and empirically demonstrate the settings in which the "paradox of choice" arises, i.e. when having fewer but more meaningful choices improves the learning speed and performance of a reinforcement learning agent.
Towards Safe Mechanical Ventilation Treatment Using Deep Offline Reinforcement Learning
Nathan de Lara
Jacob A. Shkrob
My Duc Tran
Estimating individual treatment effect on disability progression in multiple sclerosis using deep learning
Jean-Pierre R. Falet
Joshua D. Durso-Finley
Julien Schroeter
Francesca Bovis
Maria-Pia Sormani
Douglas Arnold
Assessing Intrapartum Risk of Hypoxic Ischemic Encephalopathy Using Fetal Heart Rate With Long Short-Term Memory Networks
"Derek Kweku DEGBEDZUI
Michael W Kuzniewicz
Marie-Coralie Cornet
Yvonne Wu
Heather Forquer
Lawrence Gerstley
Emily F. Hamilton
P. Warrick
Robert E. Kearney
This study investigated the prediction of the risk of hypoxic ischemic encephalopathy using intrapartum cardiotocography records with a long… (voir plus) short-term memory re-current neural network. Across the 12 hours of labour, HIE sensitivity rose from 0.25 to 0.56 as delivery approached while specificity remained approximately constant with a mean of 0.71 and standard deviation of 0.04. The results show that classification improves as delivery approaches but that performance needs improvement. Future work will address the limitations of this preliminary study by investigating input signal transformations and the use of other network architectures to improve the model performance.
Deep learning, reinforcement learning, and world models
Yu Matsuo
Yann LeCun
Maneesh Sahani
David Silver
Masashi Sugiyama
Eiji Uchibe
J. Morimoto
Automated prediction of extubation success in extremely preterm infants: the APEX multicenter study
Lara Kanbar
Wissam Shalish
Samantha Latremouille
Lajos Kovacs
Martin Keszler
Sanjay Chawla
Karen A. Brown
R. Kearney
Guilherme M. Sant’Anna