Portrait of Prakash Panangaden

Prakash Panangaden

Core Academic Member
Research Topics
Machine Learning Theory
Probabilistic Models
Quantum Information Theory
Reasoning
Reinforcement Learning

Biography

Prakash Panangaden studied physics at IIT Kanpur, India. He obtained an MS in physics at the University of Chicago studying stimulated emission from blacks holes. He obtained a PhD in physics from the University of Wisconsin-Milwaukee working on quantum field theory in curved spacetime. He was an assistant professor of computer science at Cornell University where he primarily worked on semantics of concurrent programming languages.

Since 1990 he was a professor at McGill University's School of Computer Science and for the last 25 years he has been working on many aspects of Markov processes: process equivalence, logical characterization, approximation and metrics. Recently he has worked on using metrics to enhance representation learning. He has also published papers in physics, quantum information and pure mathematics. Prakash is a Core Academic Member at Mila - Quebec Institute of Artificial Intelligence. He is a Fellow of the Royal Society of Canada and a Fellow of the Association for Computing Machinery (ACM).

Current Students

Master's Research - McGill University
Co-supervisor :

Publications

Studying the Interplay Between the Actor and Critic Representations in Reinforcement Learning
Samuel Garcin
Trevor McInroe
Christopher G. Lucas
David Abel
Stefano V Albrecht
Extracting relevant information from a stream of high-dimensional observations is a central challenge for deep reinforcement learning agents… (see more). Actor-critic algorithms add further complexity to this challenge, as it is often unclear whether the same information will be relevant to both the actor and the critic. To this end, we here explore the principles that underlie effective representations for the actor and for the critic in on-policy algorithms. We focus our study on understanding whether the actor and critic will benefit from separate, rather than shared, representations. Our primary finding is that when separated, the representations for the actor and critic systematically specialise in extracting different types of information from the environment -- the actor's representation tends to focus on action-relevant information, while the critic's representation specialises in encoding value and dynamics information. We conduct a rigourous empirical study to understand how different representation learning approaches affect the actor and critic's specialisations and their downstream performance, in terms of sample efficiency and generation capabilities. Finally, we discover that a separated critic plays an important role in exploration and data collection during training. Our code, trained models and data are accessible at https://github.com/francelico/deac-rep.
Studying the Interplay Between the Actor and Critic Representations in Reinforcement Learning
Samuel Garcin
Trevor McInroe
Christopher G. Lucas
David Abel
Stefano V Albrecht
Extracting relevant information from a stream of high-dimensional observations is a central challenge for deep reinforcement learning agents… (see more). Actor-critic algorithms add further complexity to this challenge, as it is often unclear whether the same information will be relevant to both the actor and the critic. To this end, we here explore the principles that underlie effective representations for an actor and for a critic. We focus our study on understanding whether an actor and a critic will benefit from a decoupled, rather than shared, representation. Our primary finding is that when decoupled, the representations for the actor and critic systematically specialise in extracting different types of information from the environment---the actor's representation tends to focus on action-relevant information, while the critic's representation specialises in encoding value and dynamics information. Finally, we demonstrate how these insights help select representation learning objectives that play into the actor's and critic's respective knowledge specialisations, and improve performance in terms of agent returns.
Studying the Interplay Between the Actor and Critic Representations in Reinforcement Learning
Samuel Garcin
Trevor McInroe
Christopher G. Lucas
David Abel
Stefano V Albrecht
Optimal Approximate Minimization of One-Letter Weighted Finite Automata
Clara Lacroce
Borja Balle
Conditions on Preference Relations that Guarantee the Existence of Optimal Policies
Polynomial Lawvere Logic
Giorgio Bacci
Radu Mardare
Gordon D. Plotkin
Policy Gradient Methods in the Presence of Symmetries and State Abstractions
Sum and Tensor of Quantitative Effects
Giorgio Bacci
Radu Mardare
Gordon Plotkin
Behavioural pseudometrics for continuous-time diffusions
Linan Chen
Florence Clerc
Propositional Logics for the Lawvere Quantale
Giorgio Bacci
Radu Mardare
Gordon Plotkin
Behavioural equivalences for continuous-time Markov processes
Linan Chen
Florence Clerc
A Kernel Perspective on Behavioural Metrics for Markov Decision Processes
We present a novel perspective on behavioural metrics for Markov decision processes via the use of positive definite kernels. We define a ne… (see more)w metric under this lens that is provably equivalent to the recently introduced MICo distance (Castro et al., 2021). The kernel perspective enables us to provide new theoretical results, including value-function bounds and low-distortion finite-dimensional Euclidean embeddings, which are crucial when using behavioural metrics for reinforcement learning representations. We complement our theory with strong empirical results that demonstrate the effectiveness of these methods in practice.