Portrait de Sarath Chandar

Sarath Chandar

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur adjoint, Polytechnique Montréal, Département d'informatique et de génie logiciel
Professeur associé, Université de Montréal, Département d'informatique et de recherche opérationnelle
Indian Institute of Technology Madras
Sujets de recherche
Apprentissage automatique médical
Apprentissage de représentations
Apprentissage en ligne
Apprentissage par renforcement
Apprentissage profond
Optimisation
Réseaux de neurones récurrents
Traitement du langage naturel

Biographie

Sarath Chandar est professeur adjoint au départment de génie informatique et génie logiciel de Polytechnique Montréal, où il dirige le laboratoire de recherche Chandar. Il est également membre académique principal à Mila – Institut québécois d’intelligence artificielle, et titulaire d'une chaire en IA Canada-CIFAR et d'une Chaire de recherche du Canada en apprentissage machine permanent.

Ses recherches portent sur l'apprentissage tout au long de la vie, l'apprentissage profond, l'optimisation, l'apprentissage par renforcement et le traitement du langage naturel. Pour promouvoir la recherche sur l'apprentissage tout au long de la vie, Sarath Chandar a créé la Conférence sur les agents d'apprentissage tout au long de la vie (CoLLAs) en 2022 et a présidé le programme en 2022 et en 2023. Il est titulaire d'un doctorat de l'Université de Montréal et d'une maîtrise en recherche de l'Indian Institute of Technology Madras.

Étudiants actuels

Maîtrise recherche - UdeM
Maîtrise recherche - Polytechnique
Doctorat - Polytechnique
Superviseur⋅e principal⋅e :
Visiteur de recherche indépendant - no
Doctorat - Polytechnique
Superviseur⋅e principal⋅e :
Doctorat - Polytechnique
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice alumni - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Visiteur de recherche indépendant - NA
Maîtrise recherche - Polytechnique
Doctorat - Polytechnique
Co-superviseur⋅e :
Doctorat - Polytechnique
Doctorat - UdeM
Doctorat - UdeM
Maîtrise recherche - UdeM
Collaborateur·rice alumni - UdeM
Co-superviseur⋅e :
Visiteur de recherche indépendant
Maîtrise recherche - UdeM
Doctorat - Polytechnique
Co-superviseur⋅e :
Maîtrise recherche - UdeM
Doctorat - Polytechnique
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - Polytechnique
Doctorat - Polytechnique
Doctorat - Polytechnique

Publications

Intelligent Switching for Reset-Free RL
Darshan Patil
Janarthanan Rajendran
In the real world, the strong episode resetting mechanisms that are needed to train agents in simulation are unavailable. The \textit{resett… (voir plus)ing} assumption limits the potential of reinforcement learning in the real world, as providing resets to an agent usually requires the creation of additional handcrafted mechanisms or human interventions. Recent work aims to train agents (\textit{forward}) with learned resets by constructing a second (\textit{backward}) agent that returns the forward agent to the initial state. We find that the termination and timing of the transitions between these two agents are crucial for algorithm success. With this in mind, we create a new algorithm, Reset Free RL with Intelligently Switching Controller (RISC) which intelligently switches between the two agents based on the agent's confidence in achieving its current goal. Our new method achieves state-of-the-art performance on several challenging environments for reset-free RL.
Intelligent Switching for Reset-Free RL
Darshan Patil
Janarthanan Rajendran
Mastering Memory Tasks with World Models
Mohammad Reza Samsami
Artem Zholus
Janarthanan Rajendran
Current model-based reinforcement learning (MBRL) agents struggle with long-term dependencies. This limits their ability to effectively solv… (voir plus)e tasks involving extended time gaps between actions and outcomes, or tasks demanding the recalling of distant observations to inform current actions. To improve temporal coherence, we integrate a new family of state space models (SSMs) in world models of MBRL agents to present a new method, Recall to Imagine (R2I). This integration aims to enhance both long-term memory and long-horizon credit assignment. Through a diverse set of illustrative tasks, we systematically demonstrate that R2I not only establishes a new state-of-the-art for challenging memory and credit assignment RL tasks, such as BSuite and POPGym, but also showcases superhuman performance in the complex memory domain of Memory Maze. At the same time, it upholds comparable performance in classic RL tasks, such as Atari and DMC, suggesting the generality of our method. We also show that R2I is faster than the state-of-the-art MBRL method, DreamerV3, resulting in faster wall-time convergence.
Exploring Quantization for Efficient Pre-Training of Transformer Language Models
Kamran Chitsaz
Quentin Fournier
Goncalo Mordido
The increasing scale of Transformer models has led to an increase in their pre-training computational requirements. While quantization has p… (voir plus)roven to be effective after pre-training and during fine-tuning, applying quantization in Transformers during pre-training has remained largely unexplored at scale for language modeling. This study aims to explore the impact of quantization for efficient pre-training of Transformers, with a focus on linear layer components. By systematically applying straightforward linear quantization to weights, activations, gradients, and optimizer states, we assess its effects on model efficiency, stability, and performance during training. By offering a comprehensive recipe of effective quantization strategies to be applied during the pre-training of Transformers, we promote high training efficiency from scratch while retaining language modeling ability. Code is available at https://github.com/chandar-lab/EfficientLLMs.
Do Large Language Models Know How Much They Know?
Gabriele Prato
Jerry Huang
Prasanna Parthasarathi
Shagun Sodhani
Large Language Models (LLMs) have emerged as highly capable systems and are increasingly being integrated into various uses. Nevertheless, t… (voir plus)he rapid advancement in their deployment trails a comprehensive understanding of their internal mechanisms, as well as a delineation of their capabilities and limitations. A desired characteristic of an intelligent system is its ability to recognize the scope of its own knowledge. To investigate whether LLMs embody this attribute, we develop a benchmark that challenges these models to enumerate all information they possess on specific topics. This benchmark assesses whether the models recall excessive, insufficient, or the precise amount of required information, thereby indicating their awareness of how much they know about the given topic. Our findings reveal that the emergence of this property varies across different architectures and manifests at diverse rates. However, with sufficient scaling, all tested models are ultimately capable of performing this task. The insights gained from this research advance our understanding of LLMs, shedding light on their operational capabilities and contributing to the ongoing exploration of their intricate dynamics.
Do Large Language Models Know How Much They Know?
Gabriele Prato
Jerry Huang
Prasanna Parthasarathi
Shagun Sodhani
Learning Conditional Policies for Crystal Design Using Offline Reinforcement Learning
Prashant Govindarajan
Santiago Miret
Jarrid Rector-Brooks
Mariano Phielipp
Janarthanan Rajendran
Navigating through the exponentially large chemical space to search for desirable materials is an extremely challenging task in material dis… (voir plus)covery. Recent developments in generative and geometric deep learning have shown...
MVP: Minimal Viable Phrase for Long Text Understanding.
Louis Clouâtre
Fairness-Aware Structured Pruning in Transformers
Abdelrahman Zayed
Goncalo Mordido
Samira Shabanian
Ioana Baldini
Measuring the Knowledge Acquisition-Utilization Gap in Pretrained Language Models
Amirhossein Kazemnejad
Mehdi Rezagholizadeh
Prasanna Parthasarathi
Dealing With Non-stationarity in Decentralized Cooperative Multi-Agent Deep Reinforcement Learning via Multi-Timescale Learning
Hadi Nekoei
Akilesh Badrinaaraayanan
Amit Sinha
Mohammad Amin Amini
Janarthanan Rajendran
Towards Few-shot Coordination: Revisiting Ad-hoc Teamplay Challenge In the Game of Hanabi
Hadi Nekoei
Xutong Zhao
Janarthanan Rajendran
Miao Liu