Rejoignez-nous le 19 novembre pour la troisième édition du concours de vulgarisation scientifique de Mila, où les étudiant·e·s présenteront leurs recherches complexes en trois minutes devant un jury.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
High-throughput materials discovery workflows require rapid and accurate relaxation of crystal structures to identify thermodynamically stab… (voir plus)le phases among thousands to millions of candidate structures. Yet current machine learning interatomic potential (MLIP) benchmarks focus predominantly on energy prediction rather than structure relaxation, creating a critical evaluation gap for models designed to accelerate optimization. Additionally, these benchmarks are trained on datasets consisting mainly of known stable or near-stable materials, thus failing to capture the challenges of unexplored chemical spaces. We address these limitations by introducing a benchmark that evaluates state-of-the-art MLIPs and a one-shot relaxation model on structure relaxation with crystals generated via a reinforcement learning pipeline. We compare energy lowering and average maximum force computed via DFT, as well as relaxation runtime. We also contrast direct force-prediction strategies against conservative energy-differentiation approaches to determine which paradigm delivers superior relaxation performance. Our results indicate that there is a clear disconnect between MLIP energy prediction and force convergence in relaxation, challenging current benchmarking approaches.