Mila’s AI for Climate Studio aims to bridge the gap between technology and impact to unlock the potential of AI in tackling the climate crisis rapidly and on a massive scale.
The program recently published its first policy brief, titled "Policy Considerations at the Intersection of Quantum Technologies and Artificial Intelligence," authored by Padmapriya Mohan.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Computer-aided design (CAD) is the digital construction of 2D and 3D objects, and is central to a wide range of engineering and manufacturin… (see more)g applications like automobile and aviation. Despite its importance, CAD modeling remains largely a time-intensive, manual task. Recent works have attempted to automate this process with small transformer-based models and handcrafted CAD sequence representations. However, there has been little effort to leverage the potential of large language models (LLMs) for sequential CAD design. In this work, we introduce a new large-scale dataset of more than 170k CAD models annotated with high-quality, human-like descriptions generated with our pipeline based on GPT-4.1. Using this dataset, we fine-tune powerful code-LLMs to generate CAD sequences represented in a JSON-based format from natural language descriptions, demonstrating the viability and effectiveness of this approach for text-conditioned CAD generation. Because simple metrics often fail to reflect the quality of generated objects, we introduce geometric and topological metrics based on sphericity, mean curvature, and Euler characteristic to provide richer structural insights. Our experiments and ablation studies on both synthetic and human-annotated data demonstrate that CADmium is able to automate CAD design, drastically speeding up the design of new objects. The dataset, code, and fine-tuned models are available online.
*In silico* design and optimization of new materials primarily relies on high-accuracy atomic simulators that perform density functional the… (see more)ory (DFT) calculations. While recent works showcase the strong potential of machine learning to accelerate the material design process, they mostly consist of generative approaches that do not use direct DFT signals as feedback to improve training and generation mainly due to DFT's high computational cost. To aid the adoption of direct DFT signals in the materials design loop through online reinforcement learning (RL), we propose **CrystalGym**, an open-source RL environment for crystalline material discovery. Using CrystalGym, we benchmark value- and policy-based reinforcement learning algorithms for designing various crystals conditioned on target properties. Concretely, we optimize for challenging properties like the band gap, bulk modulus, and density, which are directly calculated from DFT in the environment. While none of the algorithms we benchmark solve all CrystalGym tasks, our extensive experiments and ablations show different sample efficiencies and ease of convergence to optimality for different algorithms and environment settings. Our goal is for CrystalGym to serve as a test bed for reinforcement learning researchers and material scientists to address these real-world design problems with practical applications. Furthermore, we introduce a novel class of challenges for reinforcement learning methods dealing with time-consuming reward signals, paving the way for future interdisciplinary research for machine learning motivated by real-world applications.
Property-driven AI-automated material discovery presents unique challenges owing to the complex nature of the chemical structural space and … (see more)computationally expensive simulations. For crystalline solids, the band gap is an important property for designing semiconductors and batteries. However, optimizing crystals for a target band gap is difficult and not well-explored. Reinforcement learning (RL) shows promise towards optimizing crystals, as it can freely explore the chemical space. However, it relies on regular band gap evaluations, which can only be accurately computed through expensive Density Functional Theory (DFT) simulations. In this study, we propose an active learning-inspired pipeline that combines RL and DFT simulations for optimizing crystal compositions given a target band gap. The pipeline includes an RL policy for predicting atom types and a band gap network that is fine-tuned with DFT data. Preliminary results indicate the need for furthering the state-of-the-art to address the inherent challenges of the problem.
Navigating through the exponentially large chemical space to search for desirable materials is an extremely challenging task in material dis… (see more)covery. Recent developments in generative and geometric deep learning have shown...
Navigating through the exponentially large chemical space to search for desirable materials is an extremely challenging task in material dis… (see more)covery. Recent developments in generative and geometric deep learning have shown...
Solid-state materials, which are made up of periodic 3D crystal structures, are particularly useful for a variety of real-world applications… (see more) such as batteries, fuel cells and catalytic materials. Designing solid-state materials, especially in a robust and automated fashion, remains an ongoing challenge. To further the automated design of crystalline materials, we propose a method to learn to design valid crystal structures given a crystal skeleton. By incorporating Euclidean equivariance into a policy network, we portray the problem of designing new crystals as a sequential prediction task suited for imitation learning. At each step, given an incomplete graph of a crystal skeleton, an agent assigns an element to a specific node. We adopt a behavioral cloning strategy to train the policy network on data consisting of curated trajectories generated from known crystals.