Perspectives sur l’IA pour les responsables des politiques
Co-dirigé par Mila et le CIFAR, ce programme met en relation les décideur·euse·s avec des chercheur·euse·s de pointe en IA grâce à une combinaison de consultations ouvertes et d'exercices de test de faisabilité des politiques. La prochaine session aura lieu les 9 et 10 octobre.
Hugo Larochelle nommé directeur scientifique de Mila
Professeur associé à l’Université de Montréal et ancien responsable du laboratoire de recherche en IA de Google à Montréal, Hugo Larochelle est un pionnier de l’apprentissage profond et fait partie des chercheur·euses les plus respecté·es au Canada.
Mila organise son premier hackathon en informatique quantique le 21 novembre. Une journée unique pour explorer le prototypage quantique et l’IA, collaborer sur les plateformes de Quandela et IBM, et apprendre, échanger et réseauter dans un environnement stimulant au cœur de l’écosystème québécois en IA et en quantique.
Une nouvelle initiative pour renforcer les liens entre la communauté de recherche, les partenaires et les expert·e·s en IA à travers le Québec et le Canada, grâce à des rencontres et événements en présentiel axés sur l’adoption de l’IA dans l’industrie.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Proto-value functions (PVFs) introduced Laplacian embeddings as an effective feature basis for value-function approximation; however, their … (voir plus)utility remained limited to small, fully known state spaces. Recent work has scaled Laplacian embeddings to high-dimensional inputs, using them for reward shaping and option discovery in goal-directed tasks, yet only as auxiliary signals, rather than directly using them as features for value functions. In this paper, we learn Laplacian eigenvectors online and employ them as features for Q-learning in 23 Atari games. We empirically demonstrate that these online–learned embeddings substantially improve model-free RL in large, high-dimensional domains. We demonstrate that enriching state representations with action embeddings yields additional gains under both behavior-policy and uniform-random policies. Additionally, we introduce the Fusion architecture, which augments the representation with useful inductive bias at the embedding level. To assess the usefulness of each embedding used in the Fusion architecture, we use Shapley values analysis.
*In silico* design and optimization of new materials primarily relies on high-accuracy atomic simulators that perform density functional the… (voir plus)ory (DFT) calculations. While recent works showcase the strong potential of machine learning to accelerate the material design process, they mostly consist of generative approaches that do not use direct DFT signals as feedback to improve training and generation mainly due to DFT's high computational cost. To aid the adoption of direct DFT signals in the materials design loop through online reinforcement learning (RL), we propose **CrystalGym**, an open-source RL environment for crystalline material discovery. Using CrystalGym, we benchmark value- and policy-based reinforcement learning algorithms for designing various crystals conditioned on target properties. Concretely, we optimize for challenging properties like the band gap, bulk modulus, and density, which are directly calculated from DFT in the environment. While none of the algorithms we benchmark solve all CrystalGym tasks, our extensive experiments and ablations show different sample efficiencies and ease of convergence to optimality for different algorithms and environment settings. Our goal is for CrystalGym to serve as a test bed for reinforcement learning researchers and material scientists to address these real-world design problems with practical applications. Furthermore, we introduce a novel class of challenges for reinforcement learning methods dealing with time-consuming reward signals, paving the way for future interdisciplinary research for machine learning motivated by real-world applications.
Traditional multi-agent reinforcement learning (MARL) systems can develop cooperative strategies through repeated interactions. However, the… (voir plus)se systems are unable to perform well on any other setting than the one they have been trained on, and struggle to successfully cooperate with unfamiliar collaborators. This is particularly visible in the Hanabi benchmark, a popular 2-to-5 player cooperative card-game which requires complex reasoning and precise assistance to other agents. Current MARL agents for Hanabi can only learn one specific game-setting (e.g., 2-player games), and play with the same algorithmic agents. This is in stark contrast to humans, who can quickly adjust their strategies to work with unfamiliar partners or situations. In this paper, we introduce Recurrent Replay Relevance Distributed DQN (R3D2), a generalist agent for Hanabi, designed to overcome these limitations. We reformulate the task using text, as language has been shown to improve transfer. We then propose a distributed MARL algorithm that copes with the resulting dynamic observation- and action-space. In doing so, our agent is the first that can play all game settings concurrently, and extend strategies learned from one setting to other ones. As a consequence, our agent also demonstrates the ability to collaborate with different algorithmic agents ---agents that are themselves unable to do so.
Property-driven AI-automated material discovery presents unique challenges owing to the complex nature of the chemical structural space and … (voir plus)computationally expensive simulations. For crystalline solids, the band gap is an important property for designing semiconductors and batteries. However, optimizing crystals for a target band gap is difficult and not well-explored. Reinforcement learning (RL) shows promise towards optimizing crystals, as it can freely explore the chemical space. However, it relies on regular band gap evaluations, which can only be accurately computed through expensive Density Functional Theory (DFT) simulations. In this study, we propose an active learning-inspired pipeline that combines RL and DFT simulations for optimizing crystal compositions given a target band gap. The pipeline includes an RL policy for predicting atom types and a band gap network that is fine-tuned with DFT data. Preliminary results indicate the need for furthering the state-of-the-art to address the inherent challenges of the problem.